Q. Code:812654

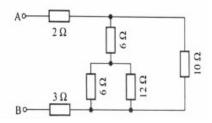
Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Third -Semester

EC18303 – CIRCUIT THEORY

(Electronics and Communication Engineering)

(Regulation 2018/2018A)

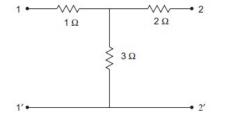

TIME: 3	B HOURS MAX. MARKS:	MAX. MARKS: 100	
COURSE	STATEMENT	RBT	
OUTCOMES		LEVEL	
CO 1	Determine the characteristics of electrical circuits by applying circuit laws	4	
CO 2	Compare the phasor diagram of R, L and C and analyze the AC circuit power	4	
CO 3	Infer the phenomenon of series and parallel resonance in electrical circuits and understand the effect of magnetic coupling between windings	4	
CO 4	Compare the characteristics of RC, RL and RLC circuits for AC and DC inputs and evaluate the two port network parameters	4	
CO 5	Sketch the various network topologies	3	

PART- A (10 x 2 = 20 Marks)

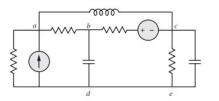
(Answer all Questions)

		CO	RBT LEVEL
1.	When two resistors R1 and R2 are connected in series then the equivalent resistance is	1	2
	25 Ω and if in parallel equivalent resistance is 6 Ω . Then find R1 and R2?		

Determine the equivalent resistance between the terminals A and B in following circuit. 2. 2 1

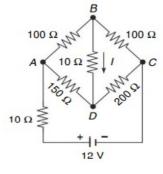

L=5H.Find current in the circuit in polar form?4. What is phasor? why phasor concept is required in AC circuit analysis? 2	2
Λ What is phasor? why phasor concept is required in ΛC circuit analysis? 2	2
4. What is phasor : why phasor concept is required in AC circuit analysis: 2	
5. A series RLC circuit has R=100 Ω , X _c =62.833 Ω . Find the value of L for resonance at 3	3
50Hz.	
6. What is the maximum possible mutual inductance of two inductively coupled coils with 3	2
self-inductances of 400mH and 800mH?	
7. Compute the value of R and L when the current through the RL circuit excited by a 10V 4	4
DC source is given by $i(t) = 2(1-e^{-10t})$ A. Assume zero initial condition.	
8. Find the Z- parameters of the following two port network. 4	2
8. Find the Z- parameters of the following two port network. 4	2

5

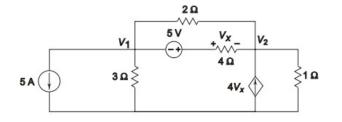

5

2

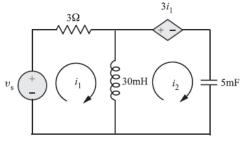
2


- 9. Find the incidence matrix for the below reduced incidence matrix.
- 10. For the circuit shown below, draw the graph, one tree and its co-tree.

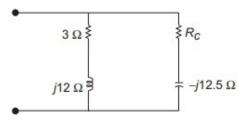
PART- B (5 x 14 = 70 Marks)


Marks CO RBT LEVEL

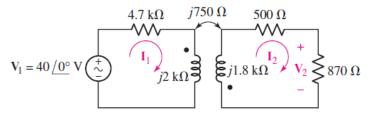
11. (a) In the bridge circuit shown below, find the current through 10 Ω resistor (14) 1 4 across BD using mesh analysis.



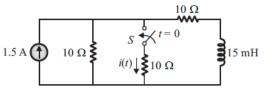
(b) Find the node voltages and voltage V_X for the following circuit. (14) 1 4



12. (a) Find steady state sinusoidal currents i_1 and i_2 for the circuit shown below, (14) 2 4 when $V_s = 10\sqrt{2}\cos(100t+45^0)$ V.

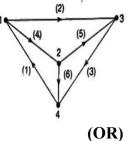

(OR)

- (b) Find the node voltages in the circuit shown below? (14) 2 4 $5/0^{\circ}A$ $20/90^{\circ}V$ + $-j2\Omega$ 21 4Ω
- 13. (a) (i) A series RLC circuit consists of R = 100 ohms, L=0.02 H and C=0.02 (7) 3 4 microfarad. Calculate resonance frequency, quality factor, bandwidth and maximum current at resonance if 50V sinusoidal signal is applied.
 - (ii) For the below circuit, determine the value of R_c for which the given (7) 3 4 circuit resonates

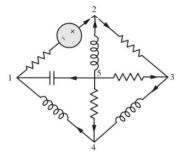


(b) For the given circuit, determine the mesh currents I_1 and I_2 . And also find (14) 3 4 the voltage drop across 870 Ω resistor.

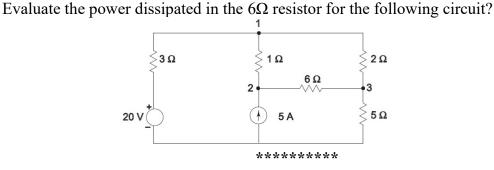
14. (a) In the circuit shown, the switch S is open for a long time and is closed at t (14) 4 4 =0. Determine the current i(t) for $t \ge 0^+$.



(OR)


(b) Find the open circuit impedance parameters of the following circuit. (14) 4 4

15. (a) For the given graph, find Incidence matrix (A), Tie-set matrix (B) and (14) 5 4 fundamental cut-set matrix (C).



(b) For the given network, determine the incidence matrix(A), Tie-set (14) 5 4 matrix(B), and cut-set matrix(C).

<u>PART- C (1 x 10 = 10 Marks)</u> (Q.No.16 is compulsory)

Marks	CO	RBT LEVEL
(10)	1	5

16.