Q. Code: 600304

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Third Semester

EC18302 – ELECTROMAGNETIC FIELDS AND WAVES

(*Electronics and Communication Engineering*)

(Regulation 2018/2018A)

TIME: 3 HOURS MAX. MARKS: 100 COURSE STATEMENT RBT OUTCOMES **CO**1 Apply different coordinate systems and vector calculus for understanding different 3 concepts in electromagnetic Engineering. **CO 2** Evaluate the physical quantities of electromagnetic fields in different media. 4 Design storage devices like capacitor, inductor used in electrical system and materials **CO 3** 5 required to assemble energy storage devices. **CO 4** Justify concepts of electromagnetic waves means of transporting energy in the form of 6 radio waves, TV signals, Radar beams. Determine the electromagnetic force exerted on charged particles, current elements, **CO 5** 3 working principle of various electric and electromagnetic energy conversion devices are based on this force.

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)	

		00	LEVEL
1.	Given a vector $\vec{A} = 3x \vec{a_x} + y \vec{a_y} + 5z \vec{a_z}$, find the divergence of A.	1	3
2.	Give the principle of Superposition.	1	1
3.	Compare Magnetic flux density and Electric flux density.	2	2
4.	If a magnetic field intensity $\vec{H} = 8\vec{a_x} + 3\vec{a_y}$, A/m exists at a point in free space, What is	2	2
5.	the magnetic flux density at that point. A current of 3 A flows through an inductor of 100 mH. What is the energy stored in the inductor?	3	2
6.	Write the expression of Ohm's law in point form.	3	2
7.	Write the point form of Maxwell's equation derived from Ampere's Circuital Law.	4	1
8.	State the significance of Faraday's law.	4	2
9.	Evaluate the value of intrinsic impedance in free space.	5	2
10.	Find the velocity of a plane wave in a lossless medium with a relative permittivity of 6 and a relative permeability of 3.	5	2

PART- B (5 x 14 = 70 Marks)

LEVEL

RBT

CO

		(Q. Code:	. Code: 600304		
			Marks	CO	RBT LEVEL	
11. (a)		ermine the electric field intensity of an infinitely long, straight, linge of a uniform density ρ_L in air.	ne (14)	1	3	
(b)	Stat	(OR) e and Prove Gauss law and explain any one of its application.	(14)	1	3	
(b)	Stati	e and Flove Gauss law and explain any one of its application.	(14)	1	5	
12. (a)	Deri	ive an expression for magnetic field intensity due to a finite lo	ng (14)	2	3	
	cond	ductor carrying current I at a distant point P. Assume R to be the	ne			
	dista	ance between conductor and point P. Use Biot Savart's law.				
		(OR)				
(b)		ive the magnetic field intensity in the different regions of co-axial cab pplying Ampere's circuital law.	le (14)	2	3	
13. (a)		ive the capacitance between two concentric spheres by using Lapla ation.	ce (14)	3	3	
	1	(OR)				
(b)	(i)	Derive the expressions for boundary conditions in Electric fields.	(8)	3	3	
	(ii)	A toroid has air core and has a cross-sectional area of 10mm ² . It h	as (6)	3	3	
		1000 turns and its mean radius is 10 mm. Find its inductance.				
14. (a)	Deri	ive the integral and point form of all the four Maxwell's equations.	(14)	4	4	
		(OR)				
(b)	(i)	Check the fields $E = Em \sin x \sin t \vec{a}_y V/m$ and $H = Em/\mu_0 \cos x \cos t$	\vec{a}_y (8)	4	4	
		A/m satisfy Maxwell's first and second equations or not.				
	(ii)	State the Maxwell's equation for free space in integral form and give	ve (6)	4	4	
		the expression for Maxwell's equation in time varying form.				
15. (a)	State	e and Prove Poynting theorem. Describe the Poynting vector, average	ge (14)	5	3	
	pow	er, complex power and instantaneous power.				
		(OR)				
(b)	(i)	Derive wave equation for the conducting medium and express it	in (8)	5	3	
		phasor form.				
	(ii)	If a wave with 200 MHz frequency propagates in free space, find the propagation constant and velocity of propagation.	ne (6)	5	3	
		PART- C (1 x 10 = 10 Marks)				

<u>PART- C (1 x 10 = 10 Marks)</u> (Q.No.16 is compulsory)

16. Determine whether the following potential fields satisfy the Laplace's (10) 3 5 equation.

a)
$$V=2x^2-3y^2+z^2$$

b)
$$V=8\rho^2\sin 2\varphi$$
