Q. Code:734410

B.E./ B.TECH. DEGREE EXAMINATIONS, MAY 2024

Fifth & Seventh Semester

EC18006 – CRYPTOGRAPHY AND COMMUNICATION NETWORK SECURITY

(Electronics and Communication Engineering)

(Regulation 2018/2018A)

TIME:3 HOURS

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Comparison of classical encryption techniques.	2
CO 2	Compare and implement symmetric and asymmetric key algorithms for real time applications.	3
CO 3	Realize the authentication and hash function concepts.	3
CO 4	Figure out network security issues and identify suitable solution.	3
CO 5	Figure out system level security issues and identify suitable solution.	3

PART- A(10x2=20Marks)

(Answer all Questions)

		CO	RBT I FVFI
1.	Differentiate between an unconditionally secure cipher and a computationally secure cipher.	1	3
2.	Encrypt the plaintext "CRYPTOGRAPHY" using shift cipher technique using the key	1	3
	"5".		
3.	Define a trapdoor one way function.	2	2
4.	State the difference between conventional encryption and public-key encryption.	2	4
5.	What is the significance of hash functions in cryptography?	3	2
6.	What do you infer from the word Message Authentication?	3	2
7.	Identify the requirements for Kerberos.	4	4
8.	How PGP handles email security?	4	2
9.	Highlight the design goals of firewalls.	5	4
10.	Examine the need for an intrusion detection system.	5	4

PART-B (5x 14=70Marks)

			Marks	CO	RB1 LEVEL
11. (a)	(i)	Find multiplicative inverse of 27 in Z_{100} using Extended Euclidean Algorithm.	(6)	1	4
	(ii)	Analyze the structure of DES and mention its weaknesses in design.	(8)	1	4

(**OR**)

			Q. Co	de:7	34410
(b)	(i)	What is the cipher text of "BRILLIANT THINKING" using	(6)	1	3
		Playfair cipher with key "EDUCATION"?			
	(ii)	Categorize various modes of operations of block ciphers.	(8)	1	4
12. (a)	(i)	State the Euler's theorem and applications of it.	(4)	2	3
	(ii)	Find the results of $6^{24} \mod 35$, $20^{62} \mod 77$, $8^{-1} \mod 77$, $7^{-1} \mod 15$	(10)	2	4
		and 71 ⁻¹ mod 100 using Euler's theorem.			
		(OR)			
(b)	(i)	Using RSA algorithm encrypt John's plaintext message 63 to Bob	(10)	2	3
		using Bob's public key. Bob chooses two prime numbers p and q as 7			
		and 11 respectively and his private key as 37. Find public key of Bob			
		before encrypting the given plaintext message. Decrypt the cipher text			
		to get back the same plain text.			
	(ii)	Illustrate Diffie-Hellman Key exchange algorithm.	(4)	2	3
13. (a)	List	the main features of the SHA-512 Cryptographic hash function. What	(14)	3	2
	kind	of compression function is used in SHA-512? Explain it.			
		(OR)			
(b)	Disc	cuss about ElGamal and Schnorr Digital Signature schemes in detail.	(14)	3	2
14. (a)	Disc	cuss about Kerberos authentication service in detail.	(14)	4	2
		(OR)			
(b)	Exp	lain about S/MIME in detail.	(14)	4	2
15. (a)	Elab	orate on the various types of malicious softwares and its related threats.	(14)	5	3
	Men	tion its counter measures.			
(b)	Wha vario	at is the necessity for firewalls in any organization? Discuss about ous types of firewalls that are helpful to build trusted systems.	(14)	5	3
		PART- C (1x 10=10Marks)			
		(Q.No.16 is compulsory)	Marks	CO	RRT
16	Fin 4	an integer that has a remainder of 2 when divided by 7 and 12 but it is	(10)	20 7	LEVEL
10.	divis	sible by 12.	(10)	۷	4
