Q. Code: 742335

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 First Semester

CY22151 – APPLIED CHEMISTRY

(Common to AD, CS, EE, EC & IT)

(Regulation 2022)

TIME: 3 HOURS

MAX. MARKS: 100

		00	
COURSE OUTCOMES	STATEMENT	RBT LEVEL	
CO 1	Describe the fundamental concepts of electrolytic and electrochemical cells and their application in batteries.	2	
CO 2	Interpret the fundamental principles of photochemical processes and their applications.	2	
CO 3	Compare and contrast nanomaterials and bulk materials, synthesis of nanomaterials and applications.	2	
CO 4	Clarify the characteristics of chemical and electrochemical sensors.	2	
CO 5	Explain the source of the errors and the different instrumentation techniques.	2	

PART- A (20 x 2 = 40 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Bring out the limitations of standard hydrogen electrode.	1	2
2.	Can we use a nickel spatula to stir a solution of copper sulphate? $E^{\circ}_{Ni2+/Ni} = +0.025 V$;	1	2
	$E^{o}_{Cu2+/Cu} = +0.34 \text{ V}.$		
3.	Copper gets deposited on iron nail, immersed in copper sulphate solution. Give	1	2
	reason.		
4.	Is it possible to utilize an irreversible reaction to produce electricity?	1	2
5.	Give any two difference between photochemical and thermal reactions.	2	2
6.	Compare free energy change in photochemical and thermal reactions.	2	3
7.	State Stark-Einstein law of photochemical equivalence.	2	2
8.	Mention the reasons for the high quantum yield.	2	2
9.	What is the difference between nanoscience and nanotechnology?	3	2
10.	Provide any one difference between top down and bottom up approach in	3	2
	nanotechnology.		
11.	Suggest one example for the stabilizing agent used in nanosynthesis.	3	2
12.	What is nanophotonics?	3	2
13.	Indicate the components in a chemical sensor.	4	2
14.	Draw the scheme of functioning of a chemical sensor.	4	2
15.	Propose the principle of voltammetry.	4	2

		Q. Code	: 742	335
16.	List any one application of amperometry.		4	2
17.	IR spectra is often characterized as molecular finger print. Justify this stateme	nt.	5	2
18.	Compare chromophore and auxochrome.		5	2
19.	Why is oxygen unsuitable as a carrier gas for GLC?		5	2
20.	Define R _f value.		5	2
	PART- B (5 x 10 = 50 Marks)	M. 1.	60	DDT
		Marks	CU	LEVEL
21. (a)	Derive the Nernst's equation for single electrode potential.	(10)	1	2
	(OR)			
(b)	Construct the lead acid battery and describe its working principle with electrode reactions.	(10)	1	2
22. (a)	With the Jablanski diagram, discuss the phenomena of phosphorescence and fluorescence.	(10)	2	2
	(OR)			
(b)	Elaborate the mechanism of photosensitization reaction with an example.	(10)	2	2
23. (a)	Elaborate the applications of Nanotechnology in any four fields.	(10)	3	2
(b)	(OR) Outline any two methods of nanosynthesis with a proper diagram.	(10)	3	2
24. (a)	Describe the determination of the concentration of an analyte by Potentiometric sensors.	(10)	4	2
	(OR)			
(b)	Illustrate the applications of chemical sensors in any two fields.	(10)	4	2
25. (a)	Elucidate the principle and instrumentation of IR spectroscopy with a block diagram.	(10)	5	2
	(OR)			
(b)	Describe the principle, instrumentation and applications of Gas Chromatography.	(10)	5	2
	$\frac{PART-C (1 \times 10 = 10 \text{ Marks})}{(Q.\text{No.26 is compulsory})}$	Marks	CO	ррт
26	Elekenste des environs sterre toristices Commune († 1	MARKS	2	
20.	Elaborate the unique characteristics of nanoparticles.	(10)	3	2
