Q. Code: 184079 Reg. No.

M.E./ M.TECH. DEGREE EXAMINATIONS, MAY 2024 Second Semester

CU22203 – WIRELESS TRANSCEIVER DESIGN

(Communication Systems)

(Regulation 2022)

		(Regulation 2022)			
TI cou	ME: 3 HOURS rse	STATEMENT	MAX. MAR	RKS:	100 rbt
	DMES Identify the various	concents involved in transceiver system design			LEVEL 7
CO1	Obtain insights on r	adio architectures and design considerations for trai	nsceiver		6
CO 2 CO 3	Design and analyze	receiver system.			6
CO 4	Design and analyze	transmitter system.			6
CO 5	Estimate the system	performance under various real time applications.			4
		PART- A (20 x $2 = 40$ Marks)			
		(Answer all Questions)		CO	RBT
				co	LEVEL
1.	Draw the block diagram of	f generic RF Transceiver.		1	2
2.	What is the significance of	f harmonic distortion.		1	2
2	The transmitten of COM	-11-hand delieure 1997 general de dha andarna - Franki		1	2
3.	of harmonias of this signal	eliphone delivers I w power to the antenna. Explai	n the effect	I	2
4	Cive the effect of desensit	I. ization in nonlinear system design		1	2
4.	Give the effect of desensit	ization in nommear system design.		I	L
5.	State image rejection reali	zation in low IF receiver.		2	2
	State ininge rejection ream			-	-
6.	List the steps used to avid	self-corruption of asymmetric signals.		2	3
	-				
7.	The designer of an IEEE	802.11g receiver attempts to place image frequer	icy in GPS	2	3
	band which contains on	ly low level satellite transmissions and hence	no strong		
	interferers. Is this Possible	2.			
8.	An engineer is to desig	gn a receiver for space applications with no c	oncern for	2	3
	interferers. Construct heter	rodyne front end with effect of noise spectra.			
9.	Discuss about VSWR mag	gnitude for Base station antenna.		3	2
10.	Considering two symbol	power integrated in the DSP with conversion gain	n of 30.64,	3	3
	nSymb= 2 and assuming	nc = 64, $ns = 2$, $Cr=256$ and $Vref = 180$ mVrms	s, Calculate		
	signal reference level in A	GC algorithm.			
11.	Determine the factors for	r dynamic range requirement of an ADC used in	n a mobile	3	2
	station.				
12.	List ADC for CDMA mob	bile station using AMPS, GSM, EDGE.		3	2

Q. Code: 184079

13.	Estimate the overall modulation accuracy EVM total, of a CDMA mobile transmitting IS-95.	station	4	3
14.	Define Adjacent Channel Power Ratio.			2
15.	Highlight important characteristics for noise emission calculation.			2
16.	Draw the cascaded block diagram of transmitter chain in noise emission.			2
17.	7. List the critical parameters of Application system design.		5	2
18.	18. Compare multimode and multiband super heterodyne transceiver design.		5	2
19.	19. Mention the techniques to measure linearity in super heterodyne receivers.		5	2
20.	Discuss about toughest requirement-Spurious Emission in a Receiver Band.		5	2
	PART- B (5 x 10 = 50 Marks)	Marks	CO	RBT LEVEL
21. (a)	Devise a system where an output can be expressed as a linear combination of responses to Individual inputs.	(10)	1	4
(b)	(OR) Categorize the transmitter leakage in CDMA and procedures to overcome in transceiver.	(10)	1	4
22. (a)	Recommend and detail the CMOS technology which started to employ this architecture to cope with the flicker noise and the DC offset problems.	(10)	2	4
(b)	Collaborate radio architecture with good sampling rate and resolution of the modem ADC/DAC with an acceptable power consumption enough to sustain present wireless communication system	(10)	2	4
23. (a)	a) Devise the relationship in detail between receiver characteristics sensitivity and noise figure.		3	3
(b)	(OR) Briefly explain the Single-tone desensitization is a unique specification for CDMA mobile system.	(10)	3	3
24. (a)	Evaluate the transmitter noise emission analysis of single port model device. (OR)		4	3
(b)	(b) Relate and brief the fundamental representation of noise voltages for a device identifying thermal noise presence.		4	3
25. (a)	Categorize the methods to achieve high resolution in building up a CDMA direct conversion transceiver.	(10)	5	4

(**OR**)

(b) Analyze the Minimum performance specifications of GSM 800/1900 Mobile (10) 5 4 transmitter used in cellular band and PCS band.

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.26 is com	pulsory)
(Q.1 10.20 15 0011	puisory

СО RBT Marks LEVEL 1

5

26. A Bluetooth receiver employs a Low Noise Amplifier (LNA) having a Gain (10)of 10 and input impedance of 50 ohms. The LNA senses a desired signal level of -80 dBm at 2.410GHz and two interferers of equal levels 2.420GHz and 2.430 GHz. Assume load is matched.

(i) Determine the value of with P1of -30dBm,

(ii) If each interferer is 10 dB below P1.Determine the corruption experienced by desired output of LNA.
