Reg. No.

TIME: 3 HOURS

M.E./M.TECH DEGREE EXAMINATIONS, MAY 2024

First Semester

CU22101 – ADVANCED RADIATION SYSTEMS

(Electronics and Communication Engineering)

(Regulation 2022)

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Students can able to understand the design parameters of an antenna and derive the radiation characteristics of fundamental antennas.	3
CO 2	Students can able to enhance the knowledge in the area of various antenna arrays and make them to derive the radiation parameters.	3
CO 3	Students can able to compute the parameters of aperture and slot antennas.	3
CO 4	Students can able to impart the design and analysis of modern antennas.	4
CO 5	Students can able to design antennas for various application.	3

PART- A (20 x 2 = 40 Marks)

(Answer all Questions)

		CO	RBT LEVEI
1.	Illustrate far fields of an antenna.	1	3
2.	List the types of polarization.	1	2
3.	Define isotropic radiator.	1	2
4.	Mention the advantages of matching techniques.	1	2
5.	A linear end-fire, uniform array of 16 elements has a separation of $\lambda/2$ between	2	3
	elements, find the directivity.		
6.	Enumerate the features of phased array antenna?	2	2
7.	Compare analog and digital beamforming.	2	2
8.	Specify the applications of frequency scanned arrays.	2	3
9.	What do you understand term aperture?	3	2
10.	State field equivalence principle.	3	2
11.	Discuss the feeding techniques of parabolic reflector.	3	3
12.	Point out dipole and slot antenna are complementary to each other.	3	3
13.	Draw the equivalent circuit of rectangular patch antenna.	4	3
14.	Distinguish between transmission line and cavity model.	4	2
15.	Illustrate aperture coupled feeding technique of rectangular microstrip patch antenna.	4	3
16.	What are the limitations of microstrip patch antenna?	4	2

		Q. Code:721027		
17.	Enumerate the features of PIFA antenna.	5	2	
18.	Mention the advantages and disadvantages of Vivaldi antenna.	5	2	
19.	Draw the structure of wearable antenna.	5	2	
20.	Discuss about metamaterial antenna.	5	3	

PART- B	$(5 \times 10 =$	50 Marks)
---------	------------------	-----------

		Marks	CO	RBT LEVEL
21. (a)	Derive the expressions for the radiated field and radiation resistance of a half wave dipole.	(10)	1	3
	(OR)			
(b)	Derive the expressions for radiation intensity, gain, Directivity and input impedance of an antenna.	: (10)	1	3
22. (a)	Evaluate the performance of digital beamforming in the construction of phased array with neat diagram.	£ (10)	2	3
	(OR)			
(b)	Evaluate the performance of phased array antenna using MEMs technology.	s (10)	2	3
23. (a)	Derive the radiation components of field from a rectangular aperture with an illustration of Field Equivalence Principle.	(10)	3	3
(b)	Derive the input impedance of slot antenna and also mention its applications.	(10)	3	3
24. (a)	Examine the radiation mechanism from rectangular microstrip patch antenna with neat diagram and also discuss about any two types of feeding techniques.	(10)	4	4
	(OR)			
(b)	Construct the rectangular microstrip patch antenna using cavity model and obtain the mode field patterns.	(10)	4	4
25. (a)	Explain the working principle and applications of medical antenna with a neat diagram.	u (10)	5	3
	(OR)			
(b)	Explain the working principle of microstrip reflect array antenna with a neat diagram.	u (10)	5	3
	$\frac{\mathbf{PAKI} - \mathbf{C} \left(\mathbf{I} \times \mathbf{I0} = \mathbf{I0} \text{ Warks}\right)}{(\mathbf{O} \text{ No } 26 \text{ is computed})}$			
	(Q.140.20 is compulsory)	Marks	CO	RBT LEVEL

26. The aperture dimension of a pyramidal horn is $15 \times 7.5 \text{ cm}^2$. It is operating (10) 3 3 at 9 GHz. Find beamwidth , power gain and directivity.
