	Q. Code: 8273	Q. Code: 827305			
	Reg. No.				
	M.E / M.TECH. DEGREE EXAMINATIONS, MAY 2024				
Second Semester					
	(Electronics and Communication Engineering)				
TI	(Regulation 2022)	. 100			
COUN	RSE STATEMENT	• 100 RBT LEVEL			
CO 1	Understand sensors and the networking of sensed data for different applications.	2			
CO 2	Design issues in sensor nodes and network architectures.	3			
CO 3	Design a medium access and routing protocols for the energy constrained operation scenario.	al 5			
CO 4	Appreciate the need for designing energy efficient sensor nodes and protocols for prolonging network lifetime.	or 4			
CO 5	Demonstrate an understanding of the different implementation challenges and the solutio approaches.	n 4			
	PART- A (20 x 2 = 40 Marks) (Answer all Questions) CO	RBT			
1.	How do sensor networks contribute to effective facility management? 1	LEVEL 2			
2.	What are actuators? 1	2			
3.	Classify sensor applications based on type of applications.	2			
4.	Highlight the tradeoffs related to lifetime of a sensor. 1	3			
5.	List out the different types of mobility in WSNs. 2	2			
6.	Create a diagram illustrating and labeling the primary components of a sensor node. 2	2			
7.	Establish a correlation between sleep time, recovery time, and startup energy. 2	4			

Identify the most appropriate communication technique for Wireless Sensor Networks 2 2 and provide a justification for its suitability.

	Q. Code: 8	3273()5
9.	What are the key features of IEEE 802.15.4 MAC protocol, and how does it differ from traditional Wi-Fi MAC protocols?	3	2
10.	Highlight the concept of Low Duty Cycle Protocols in Wireless Sensor Networks	3	4
11.	Mention the advantages of Zigbee in Wireless Sensor Networks.	3	2
12.	How wake up radio reduces energy consumption during idle periods.	3	2
13.	What are the pros and cons of centralized clustering approaches in WSN?	4	2
14.	How topology control impacts WSN's performance and energy efficiency?	4	3
15.	Identify the role of Clustering in Wireless Sensor Networks.	4	2
16.	How time synchronization is achieved in Wireless Sensor Networks?	4	2
17.	What are the techniques used for Storage and Indexing in sensor networks?	5	2
18.	How are queries formulated and executed in Wireless Sensor Networks?	5	2
19.	How does efficient data management contribute to network performance and resource utilization?	5	4
20.	How does tiny aggregation optimize data aggregation while minimizing energy consumption?	5	2
	PART- B (5 x 10 = 50 Marks) Marks	CO	RBT
21. (a)	Discuss the practical applications of Wireless Sensor Networks, illustrated (10) with appropriate examples?	1	3
	(OR)		
(b)	Discuss the essential characteristics that Wireless Sensor Networks must (10) meet for effective deployment and operation.	1	3
22. (a)	Provide a comprehensive discussion of the communication components (10)	2	3

RBT

Marks

со

utilized within a sensor node.

(OR)

- (b) Discuss the diverse scenarios where Wireless Sensor Networks (WSNs) are (10) 2 3 utilized for various applications.
- 23. (a) Compare and contrast IEEE 802.15.4 with Zigbee, highlighting their (10) 3 4 differences and suitability for various WSN applications.

(**OR**)

- (b) Analyze how the wake up radio concept contributes to reducing energy (10) 3 4 consumption and prolonging network lifetime. Provide examples of scenarios where these concepts are most beneficial.
- 24. (a) Examine the roles of sensor nodes and its utilities in managing tasking and (10) 4 4 control within Wireless Sensor Networks .

(OR)

- (b) Investigate the techniques of trilateration and triangulation utilized for (10) 4 4 achieving positioning within Wireless Sensor Networks.
- 25. (a) Analyze the relationship between efficient data management approaches and (10) 5 4 the optimization of resource utilization, leading to improved network performance.

(OR)

(b) Explore the hurdles linked with storage and indexing in sensor networks, (10) 5 4 while also presenting examples of techniques employed for streamlined data storage and indexing.

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.26 is compulsory)

26. Evaluate the importance of security measures in Wireless Sensor Networks. (10) 5 5
 Also examine the various security threats faced by WSNs and propose strategies and mechanisms to mitigate these threats, ensuring data integrity, confidentiality, and availability.

Q. Code: 827305