Q. Code: 945209

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Fourth Semester

CS22402 – MACHINE LEARNING TECHNIQUES

(Common to CS and AD)

(Regulation 2022)

TIME: 3 HOURS MAX. MARKS: 100 COURSE RBT **Statements** OUTCOMES LEVEL Upon successful completion of the course, the students should be able to **CO1** Explain basics of machine learning and estimation methods. 2 Construct supervised learning models. **CO 2** 3 **CO 3** Construct unsupervised learning models and ensemble models. 3 Construct complex models with advanced machine learning techniques. **CO 4** 3 **CO 5** Evaluate and compare the performance of various models. 4 **PART-** A (20 x 2 = 40 Marks) (Answer all Ouestions) CO RBT LEVEL 1. Write short notes about Machine Learning. 1 2 2. List down the learning types adopted in Machine Learning 1 2 3. What are the three things required for concept learning? 1 2 4. What is meant by overfitting and underfitting? 1 2 5. List the types of Non-Linear activation functions. 2 2 6. What is a Perceptron? List down its types. 2 2 7. Compare the Classification method with regression technique. 2 2 8. What are the advantages and limitations of Naive Bayes classifier.? 2 2 9. Define unsupervised learning and provide an example of its application. 3 3 10. What is Principal Component Analysis (PCA), and how does it contribute to 3 2

dimensionality reduction? 11. Brief about the Ensemble Learning. 3 2 What are the differences between bagging and boosting in Machine Learning? 3 12. 2 List down the salient features of reinforcement learning. 13. 4 3 State the key constituents of reinforcement learning. 14. 4 3 15. Write short notes on 'Q' in Q-learning. 4 2 16. What is the role of activation Functions in Deep learning? 4 2 17. List down the applications of Cross-Validation. 5 3 Write short notes on Confusion Matrix. 18. 5 3 19. Brief about the Area Under the ROC curve features. 5 3 What are the benefits of K-fold cross validation? 20. 5 2

Q. Code: 945209

PART- B (5 x 10 = 50 Marks)

		Marks	CO	RBT
				LEVEL
21. (a)	Illustrate the resampling methods and discuss the working of the model.	(14)	1	2
	(OR)			
(b)	Summarize the applications of machine learning with one example.	(14)	1	2
22. (a)	Elaborate the steps involved in classification Learning? Illustrate the	(14)	2	3
	classification concept with examples.			
	(OR)			
(b)	How does a multi-layer perceptron works? Design an MLP with	(14)	2	3
	backpropagation algorithm.			

23. (a) How does the K-means algorithm work? Provide a detailed explanation on (14) 3 3 clustering process using K-means algorithm.

(**OR**)

(b) Develop a dendrogram for the dataset given below $\{18, 22, 25, 27, 42, 43\}$ (14) 3 3

	18	22	25	27	42	43
18	0	4	7	9	24	25
22	4	0	3	5	20	21
25	7	3	0	2	17	18
27	9	5	2	0	15	16
42	24	20	17	15	0	1
43	25	21	18	16	1	0

24. (a) Describe how deep learning supports in development of efficient and robust (14) 4 3 models across the different datasets.

(OR)

- (b) Illustrate with an example, how does the Temporal method determines the (14) 4 3 rewards in reinforcement learning.
- 25. (a) Enumerate any three Performance Metrics for Classification in detail. (14) 5 4

(OR)

(b) Elucidate about the Classification Algorithm in Machine Learning with (14) 5 4 suitable example for identifying the spam Email.

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.26 is compulsory)

Marks	CO	RBT
		LEVEL
(10)	3	5

26. Consider the following

Transition Matrix:

	Sunny	Rainy	Cloudy
Sunny	0.8	0.15	0.05
Rainy	0.38	0.60	0.02

Cloudy 0.75	0.05	0.20
-------------	------	------

Emission Matrix:

	Shorts	Coat	Umbrella
Shorts	0.60	0.30	0.10
Coat	0.05	0.30	0.65
Umbrella	0	0.5	0.5

The initial probability state vector is given as $\{0.7, 0.1, 0.2\}$

Find the probability for the hidden state {coat, coat, umbrella} and {Shorts,

Coat, Umbrella}

for the condition states {sunny, rainy, cloudy}
