Q. Code: 240300

Reg. No.

B.E./ B. TECH.DEGREE EXAMINATIONS, MAY 2024 Fifth-Semester

CS18503 – THEORY OF COMPUTATION

(Computer Science and Engineering)

(Regulation2018/2018A)

ΠT	TIME:3 HOURS MAX. MAX		0
	RSE STATEMENT OMES		RBT LEVEL
CO 1	The student will be able to design and build Finite Automata.		3
CO 2	The student will be able to implement prototype of compiler.		3
CO 3	The student will be able to develop the parsers and experiments its design.		3
CO 4	The student will be able to apply the various optimization techniques.		3
CO 5	The student will be able to use the different compiler construction tools.		2
	PART- A(10x2=20Marks)		
	(Answer all Questions)		
		co	RBT LEVEL
1.	Write the impact of proof by contradiction in solving the theorems.	1	3
2.	Compare and contrast between DFA and NFA-ξ	1	3
3.	Justify the need of pumping lemma for regular languages.	2	3
4.	Construct a regular expression for set of strings with at least one pair of consecutive 1's.	2	3
5.	Identify the language accepted by the following	3	3
	CFG G=({S,A}, {a,b}, {S \rightarrow aSd aAd, A \rightarrow bAc bc}, S).		
6.	How to find out that a given CFG is ambiguous? Give an example.	3	2
7.	List the closure properties of CFL?	4	3

8. Write the various programming techniques for Turing machine construction. 4

9. State the purposes of L_d and L_u .5210. Write the importance of Halting Problem.52

PART- B (5x 14=70Marks)

Marks CO RBT LEVEL

2

Q. Code: 240300 (14) 1 3

(8)

2

3

11. (a) Obtain the DFA equivalent to the following NFA:

state	Inpu	t symbols
state	0	1
→p	{ p , q }	{ p }
q	{ r , s }	{t}
r	{ p , r }	{t}
*\$	φ	φ
*t	φ	φ

(OR)

(b)	(i)	Prove that a Language L is accepted by some DFA if and only if L is	(8)	1	3
		accepted by some NFA.			
	(ii)	State the Induction Principle and Prove by Induction, For all n>=0:	(6)	1	3
		$\sum_{n=1}^{n} i^{3} = \{n(n+1)/2\}^{2}.$			
12. (a)	(i)	Convert the regular expression (0+11)*011 in to equivalent NFA- ξ	(6)	2	3

(ii) Infer the Regular expression from the given NFA using R_{ij} method.

Q. Code: 240300 (14) 2 3

3

(b) Construct the regular expression from the given DFA

D= ({q1, q2, q3}, {0,1}, δ , q1, {q1}) where δ is given by the transition table using State elimination method.

State	0	1
$\rightarrow^* q_1$	q 1	q ₂
q ₂	q ₃	q ₂
q ₃	\mathbf{q}_1	\mathbf{q}_2

13. (a) Consider the following grammar: E->E+E | E-E | E*E | (E) | id (14) 3
Construct the parse tree using LMD and RMD for the sentence
w= id*id*(id+id)*id. Also show that the above grammar is ambiguous? (OR)

Convert the following grammar into PDA and also recognize the **(b)** (6) 3 3 (i) string w=00110101 S→0B | 1A $A \rightarrow 0 | 0S | 1AA$ $B \rightarrow 1 | 1S | 0BB$ (ii) Design the PDA for the language, $L = \{a^m b^n c^m | n, m \ge 1\}$ using (8) 3 3 empty stack acceptance. Convert the given CFG G = $({S,A,B}, {0,1}, P, S)$ into CNF where P is given 3 14. (a) (14) 4

S→ABA

by

 $A \rightarrow 0A \mid \xi$

 $B \rightarrow 1B \mid \xi$

(OR)

(b)	(i)	Design a Turing Machine for the language $L = \{ a^n b^n n \ge 1 \}$.	(8)	4	3
	(ii)	Design a Turing Machine that accepts the language $01^* + 10^*$	(6)	4	3
15. (a)	(i)	Prove that every non trivial property of the RE languages is undecidable.	(8)	5	2
	(ii)	Prove that L_u is RE but not recursive.	(6)	5	2

(**OR**)

		Q. Code: 2403					
(b)	(i)	Prove that If both a language L and its complement are recursive enumerable, then L is recursive.	(8)	5	2		
	(ii)	Discuss in detail about P and NP Problems with examples.	(6)	5	2		
		<u>PART- C (1x 10=10Marks)</u>					

(Q.No.16 is compulsory)

		Marks	CO	RBT LEVEL
16.	Convert the following grammar into GNF	(10)	4	5
	S→AB			
	A→BS b			

B→SA | a
