Q. Code:232118

Reg. No.

B.E./ B.TECH. DEGREE EXAMINATIONS, MAY 2023

Fourth-Semester

CS18405 – DESIGN AND ANALYSIS OF ALGORITHMS

(Computer Science and Engineering)

(Regulation2018/2018A)

TIME:3 HOURS

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEI				
CO 1	The students will be able to analyze the running time of algorithms using asymptotic analysis					
CO 2	The students will be able to describe the divide-and-conquer techniques and analyze the running time of the algorithms synthesizing those paradigms					
CO 3	The students will be able to describe the dynamic programming and greedy paradign and analyze the running time of the algorithms using those techniques					
CO 4	The students will be able to employ linear programming and computational geometry methods to solve engineering problems	4				
CO 5	The students will be able to describe the non-deterministic polynomial algorithms	5				
	PART- A(10x2=20Marks)					
	(Answer all Ouestions)					

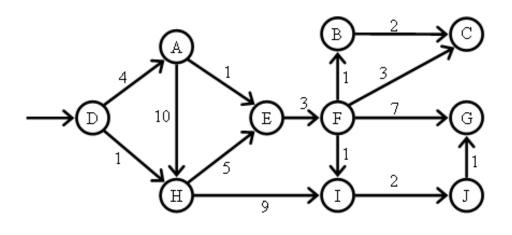
Questio

1.	Arrange the following functions in increasing orders of their growth.	со 1	RBT LEVEL 2		
	$n!$, $\log n$, 3^n , n , n^2 , n^3 , 2^n , $n \log n$.				
2.	State the three steps to be proved using a loop invariant.	1	2		
3.	Illustrate the significance of employing the 'divide and conquer' technique in algorithm	2	2		
	design.				
4.	Derive the worst case time complexity of Merge sort using Master's theorem.	2	4		
5.	Compare dynamic programming and divide and conquer design technique.	3	3		
6.	Write the merits and demerits of greedy algorithms				
7.	Differentiate feasible and optimal solutions in linear programming				
8.	How simplex method identify optimal solution and determine whether the problem is	4	3		
	infeasible or unbounded?				
9.	Derive the relationship of NP- complete problems with other classes P and NP- hard	5	4		
10.	Illustrate the backround of Clique problem.	5	4		

Q. Code:232118

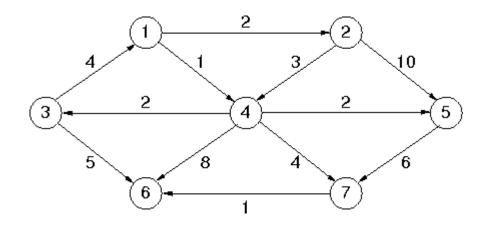
PART- B (5x 14=70Marks)

			Marks	CO	RBT LEVEL
11. (a)	Disc	uss insertion sort algorithm. Analyse its best and worst case	(14)	1	2
	com	plexity.			
		(OR)			
(b)	(i)	Discuss about the Big oh, big omega and big theta notations with suitable examples.	(7)	1	2
	(ii)	Write a recursive algorithm to compute x^y and analyse it's complexity.	(7)	1	2

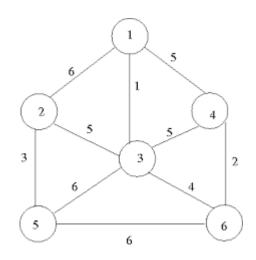

- 12. (a) (i) Solve the recurrence relation using recursive tree method (7) 2 2 T(n)=4T(n/2) + n; T(1)=1
 - (ii) Solve using masters method (7) 2 2 $T(n) = 4T(n/2) + n^{2}$

$$I(n) = 4I(n/2) + n^2$$

$$T(n) = 2 T(n/2) + n^3$$


(OR)

- (b) Discuss with an example, the working of finding closest pair of points in a (14) 2 2
 Cartesian plane using divide-and-conquer strategy. Derive the complexity of the algorithm.
- 13. (a) Write the Dijkstra's algorithm. Find the shortest path from node 'A' to all (7) 3 3 other nodes using Dijkstra's algorithm.



(OR)

(b) (i) Find the MST for the following weighted graph using Prim's (7) 3 3 Algorithm.

(ii) Find the MST for the following weighted graph using Kruskal's (7) 3 3Algorithm.

14. (a)Solve the problem using Simplex method.(14)43Maximize Z = 5x1 + 8 x2subject to constraints $2x1 + x2 \le 100$ $x1 + 3x2 \le 90$ $x1, x2 \ge 0$

(OR)

(b) Illustrate Graham's scan and Jarvis's march algorithms for the construction (14) 4 3 of convex hull with its complexity.

СО

RBT

Marks

15. (a) Analyse the backround of Circuit satisfiability problem with example. (14) 5 4Prove that circuit satisfiability is NP-complete.

(OR)

(b) Analyse the backround of the Vertex cover problem with example. Prove (14) 5 4 that Vertex Cover is NP-complete.

<u>PART- C (1x 10=10Marks)</u>

(Q.No.16 is compulsory)

16. Consider the list of marks obtained by 'n' students in a subject. Write an (10) 1 5 efficient algorithm to find and count the number of unique marks and display duplicate marks with its frequency. Analyse the algorithm's efficiency.