Reg. No.							

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024

Second Semester

CS18201 – DIGITAL PRINCIPLES AND SYSTEM DESIGN

(Computer Science and Engineering)

(Regulation 2018/2018A)

TIME: 3 HOURS		S HOURS MAX. MARI	KS: 1	: 100	
COU		STATEMENT		RBT LEVEL	
CO 1	-	Students will be able to learn the different types of number systems and simplificate of Boolean functions	ion	3	
CO 2		Students will be able to understand various logic gates and their usage.		3	
		Students will be able to study, analyse and design various combinational circuits and implementation using VHDL	its	4	
CO 4 Students will be able to study, analyse and design various synchron asynchronous sequential circuits and its implementation using VHDL.		Students will be able to study, analyse and design various synchronous asynchronous sequential circuits and its implementation using VHDL.	and	4	
CO 5	CO 5 Students will be able to understand the different type of memory and their structures				
		PART- A (10 x 2 = 20 Marks) (Answer all Questions)	C O	RBT LEVEL	
1.	Find	the Octal equivalent of the hexadecimal number DC.BA	1	3	
2.	_		1	3	
	$\mathbf{F} = \mathbf{x}$	x'y' + xy + x'y			
3.	Diffe	erentiate between Combinational and Sequential Circuits.	2	3	
4.	Defii	Define propagation delay?			
5.	Cons	struct the Excitation Table of JK- Flip Flop.	3	3	

		Q. Code: /61/20						
6.	Discuss	Discuss briefly about edge triggered flip flops?						
7.	Enumer		4	3				
8.	Discuss		4	3				
9. Define Error detecting codes? Give examples.					2			
10.	List the	major differences between PLA and PAL.		5	2			
		PART- B (5 x 14 = 70 Marks)	Marks	СО	RBT LEVEI			
11. (a	11. (a) (i) Solve the following expression using Karnaugh Map		6	1	3			
		Y = A'BCD' + A'BC'D + ABC'D' + A'B'CD'.						
	(ii)	Simplify the following expression and implement them with two-level NAND gate circuits:	8	1	3			
		BD + BCD' + AB'C'D'						
		(OR)						
(I	b) Mir	nimize the following expression using the Quine McCluskey method.	14	1	3			
	Y =	A'BC'D' + A'BC'D + ABC'D' + ABC'D + AB'C'D + A'B'CD'						
12. (a	a) Cor	nstruct a combinational circuit that converts 8421 BCD code to excess-3 e.	14	2	3			
		(OR)						
(1)	-	nstruct a Full Subtractor and derive expression for difference and row. Realize the circuit using gates.	14	2	3			

13. (a)	Illustrate the working of Master Slave JK FlipFlop with their Characteristic and Excitation Table.	14	3	4					
	(OR)								
(b)	With necessary example and diagram illustrate the concept of reduction of states and flow tables.	14	3	4					
14. (a)	(i) Give the comparison between the Synchronous and Asynchronous Sequential circuits	5	4	4					
	(ii) Outline the procedure for analyzing Asynchronous sequential circuits.	9	4	4					
	(OR)								
(b)	(i) Examine the possible Hazards and methods to avoid them in the combinational circuits.	6	4	4					
	(ii) Examine the possible Hazards in sequential circuits.	8	4	4					
15. (a)	Illustrate the Error detection and Correction using Hamming Codes.	14	5	3					
	(OR)								
(b)	With a neat diagram construct the working principle of Programmable Array Logic.	14	5	3					
<u>PART- C (1 x 10 = 10 Marks)</u>									
	(Q.No.16 is compulsory)	Marks	CO	RBT LEVEL					
16.	Implement the switching function	10	2	5					
	$F(A,B,C,D) = \Sigma m(1,3,4,11,12,13,14,15)$ using an 8:1 multiplexer.								
