											Q. Co	ode:36	0987
		Reg. No.											
		B.E. / B.TECH. DEGREE H	EX	AM	INA	ATI	ON	S, M		2024	 	I	
		Fifth-	Ser	neste	er			,					
		CS18052 – FUNDAMENTALS C (Common)F	AR EE d	TIF & CS	ICI	[AL	INT	ELL	IGI	ENC	E	
		(Regulation	20)18/2	2018	Á)							
	AE:	3 HOURS	ATE	MIN	F					MA	X. M	ARKS:	: 100
OUTCO	SE MES	51	AIF	LIVIEN	l								KB1 LEVEL
CO 1		To understand the characteristics of Intelliproduction systems.	ige	nt ag	gents	, de	fine	AI an	id leai	m ab	out		1
CO 2		Learn to use appropriate search strategies	for	solv	ving	AI	prob	lems.					2
CO 3		Understand, represent knowledge and use	fir	st or	der l	ogic	in s	solvin	g Al j	prob	lems.		3
CO4		To know about current applications of Al	an	a coi ta loa	npai	re sc 1	ome	of the	em.				3 1
05		To design an expert system from the conc	epi	15 100	ince	I							4
		PART- A (10	хź	2 = 2	0 M	ark	s)						
		(Answer a	ull (Ques	tion	s)	,						
												CO	RBT LEVEL
1.	Wha	at are the steps involved in problem solving	g?									1	1
2.	List	down the characteristics of intelligent ager	nt.									1	1
	2100	as with the enalgements of meetingent agen	10.									-	-
												_	_
3.	Diff	erentiate informed and uninformed search	stra	ategi	es.							2	2
4.	Wha	at is stochastic game?										2	2
		C C											
_	T T 71						0					2	•
5.	Wha	at are the different approaches in knowledg	e r	epres	senta	ition	1?					3	2
6.	Diff	erentiate Propositional and Predicate Logic	2.									3	2
-	T T 71												•
7.	Wha	at is the NLP used for?										4	2
8.	Wha	at is the use of AI in planning?										4	2
0	р.											_	2
9.	Disc	cuss the role of expert system shell.										5	3

10. Illustrate how meta-knowledge is represented in rule-based expert systems? 5 3

	PART- B (5 x 14 = 70 Marks)	Marks	CO	RBT LEVEL
11. (a)	Explain in detail, the structure of different intelligent agents.	(14)	1	1
	(OR)			
(b)	Briefly discuss about the characteristics of production systems.	(14)	1	1

12. (a) Traverse the given graph to find the optimal path cost from S to G using the (14) 2 3A* algorithm.

- (b) Summarie constraint satisfaction strategy to solve the following (14) 2 2 cryptarithmetic problem and also give the detailed description of the steps involved in reaching the solution.
 - B A S E + B A L L ------G A M E S ------
- 13. (a) Consider the following sentences and prove that "John likes peanuts" using (14) 3 3 forward chaining and backward chaining.
 - John likes all kinds of food.
 - Apples are food.
 - Chicken is food.
 - Anything anyone eats and isn't killed by is food.

- Bill eats peanuts and is still alive.
- Sue eats everything that Bill eats.

(OR)

(b)	Consider the following facts and using resolution find the answer for the	(14)	3	3
	query "What course would Steve like?"			
	• Steve only likes easy courses.			
	• Science courses are hard.			

- All the courses in the basketweaving department are easy.
- BK301 is a basketweaving course.

14. (a)	Illustrate the key approaches in machine translation.	(14)	4	3
	(OR)			
(b)	Explain briefly about the information retrieval.	(14)	4	3
15. (a)	With a neat diagram and Elaborate the architecture of an expert system.	(14)	5	3
	(OR)			
(b)	Write a detailed note about the MYCIN expert system and its functioning.	(14)	5	3

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

			Marks	СО	RBT
					LEVEL
16.	Give a PE	EAS description for the given agent types:	(10)	1	5
	(i)	Interactive English tutor			
	(ii)	Part-picking robot			

- (iii) Refinery controller
- (iv) Medical diagnosis system
- (v) Satellite image analysis system.

Q. Code:360987