Reg. No.

M.E / M.TECH. DEGREE EXAMINATIONS, MAY 2024 Second Semester

CP22204 – BIG DATA ANALYTICS

(Computer Science and Engineering)

(Regulation 2022)

COURSE STATEMENT **RBT LEVEL** OUTCOMES Design algorithms by employing Map Reduce technique for solving Big Data **CO**1 3 problems. Design algorithms for Big Data by deciding on the apt Features set. 3 **CO 2** 3 **CO 3** Design algorithms for handling petabytes of datasets. **CO 4** Design algorithms and propose solutions for Big Data by optimizing main memory 3 consumption. Design solutions for problems in Big Data by suggesting appropriate clustering 3 **CO 5** techniques. PART- A (20 x 2= 40 Marks) (Answer all Questions) CO RBT LEVEL 1. If you have an input file of 350 MB, how many input splits would HDFS create and what 1 3 would be the size of each input split? List out the applications of Bonferroni's principle. 1 2 2. 1 3. Give some examples for distributed file systems. 2 Suppose there is a repository of ten million documents. What is the IDF for a word that 1 3 4. appears in 10,000 documents? 2 5. Illustrate Minhashing. 2 Compute the Jaccard similarity of each pair of the following three sets: {1,2,3,4}, 2 6. 3 {2,3,5,7} and {2,4,6}. 7. What is the Hamming distance between the vectors 10101 and 11110? 2 3 2 8. List out the applications of LSH. 2 3 3 9. There are several ways that the bit-stream 1001011011101 could be partitioned into buckets. Find all of them. 3 10. Analyse the issues in stream processing. 3 11. What is the purpose for filtering streams? Mention the techniques used to filter streams. 3 3 12. Give a note on the approach to find the most-common elements in the stream. 3 3

Page PAGE 1 of NUMPAGES 4

TIME:3 HOURS

Q. Code: 131675

MAX. MARKS: 100

	Q. Code: 131675								
13.	How page rank helps in measuring of a web page within a set of similar entities?	4	3						
14.	How do you identify spam mass in a page?	4	2						
15.	How do you deal with dead ends of the graph?	4	2						
16.	What are the limitations of apriori algorithm?	4	3						
17.	Differentiate centroids and clusteroids.	5	3						
18.	What are the benefits of using CURE clustering algorithms in data analytics?	5	2						
19.	What is meant by adwords problem?	5	2						
20.	How recommender systems use collaborative filtering?	5	2						

PART- B (5x 10=50Marks)

		Marks	CO	RBT LEVEL
21(a)	Relate two variables in different ways by power laws that govern	(10)	1	3
	phenomena with examples.			
	(OR)			
(b)	Illustrate the work flow of MapReduce. How node failures are handled in	(10)	1	3
	HDFS?			
22(a)	Outline shingling of documents with a suitable example.	(10)	2	3
	(OR)			
(b)	Analyse the different ways to study the distance measures.	(10)	2	3
			_	_
23. (a)	Compute the surprise number for the following stream:	(10)	3	3
	a, b, c, b, d, a, c, d, a, b, d, c, a, a, b.			
	What is the third moment of this stream?			
	For each possible value of i, if X_i is a variable starting position i, what is			
	the value of X _i .value?			
	(OR)			
(b)	Suppose the stream consists of the integers 3, 1, 4, 1, 5, 9, 2, 6, 5.	(10)	3	3
	Determine the number of distinct elements if the hash function is:			
	$h(x) = (3x + 7) \mod 32$. Assume the length of binary string as 5.			

Show all the steps of your solution using Flajolet-Martin algorithm.

24. (a) Find the frequent itemsets and generate association rules on the following (10) 4 3 table. Assume that minimum support threshold (s= 33.33%) and minimum
Page PAGE 1 of NUMPAGES 4

confident threshold (c = 60%).

Transaction ID	Items
T1	Hot Dogs, Buns,
	Ketchup
T2	Hot Dogs, Buns
T3	Hot Dogs, Coke, Chips
T4	Chips, Coke
T5	Chips, Ketchup
Т6	Hot Dogs, Coke, Chips
	•

(OR)

(b) Analyse the limitations of apriori algorithm. Also, outline any two (10) 4 3 algorithms to overcome it in limited passes to find the frequent itemsets.

25. (a)	Investigate	how	hierarchical	clustering	algorithm	works	in	Euclidean	(10)	5	3
	space.										

(OR)

(b) Analyze the content-based architecture for a recommendation system. (10) 5 3

<u>PART- C (1 x 10=10 Marks)</u>

(Q.No.26 is compulsory)

	Marks	СО	RBT
			LEVEL
Design MapReduce algorithms to take a very large file of integers and produce an output:	(10)	1	4

i. The largest integer.

26.

ii. The same set of integers, but with each integer appearing only once.

Q. Code: 131675