Q. Code:545612

Reg. No.

TIME:3 HOURS

M.E / M.TECH. DEGREE EXAMINATIONS, MAY 2024

Second Semester

CP22020- DEEP LEARNING

(Computer Science and Engineering)

(Regulation 2022)

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	To implement feature Extraction from Image and Video Data	3
CO 2	To implement Image Segmentation and Instance Segmentation in Images	3
CO 3	To implement image recognition and image classification using a pretrained network (Transfer Learning)	3
CO 4	To implement traffic information analysis using Twitter Data	3
CO 5	To implement Autoencoder for Classification & Feature Extraction	3

PART- A (20x2= 40 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Compare and contrast Deep learning and machine learning.	1	2
2.	Illustrate the ways in which machine learning excels over deep learning.	1	3
3.	How is feature extraction done in deep learning?	1	2
4.	Implement tensor reshaping in deep learning. Demonstrate its significance.	1	3
5.	Interpret the purpose of an activation function in a neural network.	2	2
6.	Discuss the concept of overfitting in neural networks and methods to prevent it.	2	2
7.	Discuss the role of dropout regularization in neural networks.	2	2
8.	How does batch normalization help in training neural networks?	2	2
9.	How does max pooling help in reducing the dimensionality of feature maps in a CNN?	3	2
10.	Compare and contrast the architectures of LeNet-5, AlexNet, VGGNet, and ResNet.	3	2
11.	How backpropagation is applied through pooling layers in CNN?	3	2
12.	Describe the process of attention mechanism in RNNs and its role in improving the	3	2
	model's ability to focus on relevant parts of the input sequence.		
13.	Discuss the working of a pre-trained model.	4	2
14.	How does a Bidirectional RNN Work? Discuss its advantages and disadvantages.	4	2
15.	How does LSTM address the vanishing gradient problem?	4	2
16.	Differentiate GRU and LSTM.	4	2
17.	Discuss the main advantages of Q-learning.	5	2

	Q.	Code	Code:545612	
18.	How does Deep Q-Networks work? What is the significance of a target networ	k in	5	2
	Deep Q-Networks?			
19.	What are some common issues and challenges faced in training GANs, and how do	they	5	2
	affect its performance?			
20.	Compare and contrast traditional autoencoders with variational autoencoders.		5	2
	PART- B (5x 10=50Marks)	Maalaa	60	DDT
		Marks	to	LEVEL
21.	(a) How do deep learning and machine learning differ in terms of their	(10)	1	3
	architectural complexity, data requirements, feature engineering, and typical			
	application domains? Illustrate the trade-offs between model accuracy and			
	computational resource consumption, and provide examples of real-world			
	scenarios where one approach might be preferred over the other.			
	(OR)			
	(b) (i) Describe the concept of element-wise tensor operations and discuss the	(5)	1	3
	implementation of each operation.			
	(ii) Discuss the purpose of tensor concatenation and provide a scenario	(5)	1	3
	where concatenation is significant and is applied in deep learning tasks.			
22.	(a) What is backpropagation and how is it used in training neural networks?	(10)	2	2
	Explain Back propagation with its algorithm.			
	(OR)			
	(b) (i) Discuss the Adam optimizer and its key components.	(5)	2	2
	(ii) Interpret overfitting and underfitting in the context of neural networks.	(5)	2	2
23.	(a) Demonstrate the process of constructing a Convolutional Neural Network by	(10)	3	3
	detailing the various types of layers involved. Explain the role of			
	hyperparameters in designing a CNN.			
	(OR)			
(b) Illustrate the principles of the Vector Space Model in NLP, focusing on how	(10)	3	3
	text is represented in a high-dimensional space for tasks such as information			
	retrieval and document similarity.			

Describe the Long Short-Term Memory networks. Discuss how the 3 24. (a) (10)4 embedding layers, input pre-processing, and hyperparameter tuning are used in optimizing an LSTM model for sentiment analysis.

(**OR**)

- Explain the architecture of Gated Recurrent Units highlighting how they **(b)** (10)4 3 address some of the limitations of traditional Recurrent Neural Networks.
- Discuss the architecture and working principles of Generative Adversarial 5 3 25. (a) (10)Networks. How do the generator and discriminator components interact during the training process to create realistic synthetic data?

(**OR**)

Illustrate the architecture and functioning of autoencoders in the context of **(b)** (10)5 3 feature learning.

PART- C (1x 10=10Marks)

(Q.No.26 is compulsory)

со Marks RBT LEVEL 3

5

(10)

26. Digit classification is a fundamental task in machine learning and computer vision. Explore the challenges associated with real-world digit classification scenarios, such as dealing with diverse writing styles, noisy data, and handling large-scale datasets. Discuss the design considerations and architectural choices involved in constructing a suitable neural network for digit classification tasks. Evaluate the role of activation functions, regularization techniques, and optimization algorithms in fine-tuning the neural network architecture for improved accuracy and generalization.

Q. Code:545612