Q. Code:227591

00

.. .

~~

....

ппт

Reg. No.

M.E/ M. TECH.DEGREE EXAMINATIONS, MAY 2024 Second Semester

CL22204 – SOFTWARE APPLICATIONS IN CHEMICAL INDUSTRIES (INTEGRATED)

(Chemical Engineering) (Regulation 2022)

	(
TIME: 2 HOURS MAX. MARK		S: 60	
COURSE OUTCOMES	STATEMENT	RBT LEVEL	
CO 1	Perform computer aided analysis of Chemical Industries	5	
CO 2	Execute steady state and dynamic simulation of process plants.	5	
CO 3	Apply Computational Fluid Dynamics software to solve fluid flow and heat transfer problems.	4	
CO 4	Formulate and Solve optimization problems using software tools.	5	
CO 5	Apply machine learning algorithms in process plant simulation.	4	

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Write a short note on sequential modular simulation.	1	2
2.	Enumerate the important functions of process simulators.	1	2
3.	Annotate the SIMPLE algorithm for flow field computations.	2	2
4.	Illustrate the application of Time-averaged Navier-Stokes equation.	2	3
5.	Compare the short-cut and rigorous methods in heat exchanger simulation.	3	2
6.	Enumerate the theoretical principles of process heat integration.	3	2
7.	Highlight the significance and application of plant-wide optimization.	4	2
8.	Explicate the meta-heuristic algorithms for optimization.	4	2
9.	Mention the role of data analytics and machine learning in process plants.	5	2
10.	Brief about Industry 4.0.	5	2

PART- B (3x 10=30 Marks)

		Marks	CO	RBT LEVEL
11. (a)	Discuss the mixing length, k- ε and Reynolds stress equation turbulence	(10)	3	3
	models and their applications in computational fluid dynamics.			

(OR)

(b) Explain the various differencing schemes for convection – diffusion (10) 3 3 problems.

Marks

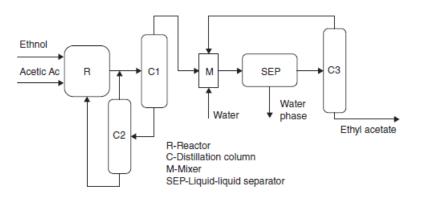
СО

RBT

12. (a) Enumerate the various control schemes employed for the dynamic (10) 4 3 simulation of a distillation column.

(OR)

- (b) Demonstrate the application of Genetic algorithm (GA) in optimization (10) 4 3 problems using a suitable example and computer code.
- 13. (a) Explicate the construction of support vector machines for regression and (10) 5 4 classification applications with suitable illustrations.


(OR)

(b) Explain the formulation of an Artificial neural network model for (10) 5 4 simulation and optimization of data with a suitable example from a process industry.

<u>PART- C (1x 10=10 Marks)</u>

(Q.No.14 is compulsory)

A simplified process flow diagram for the production of Ethyl acetate is (10) 1 5
given in the figure below. Formulate the simulation and sensitivity analysis
procedure to be followed in ASPEN PLUS.
