Q. Code:118524

Reg. No.							

M.E./ M.TECH. DEGREE EXAMINATIONS, MAY 2024 Second Semester

CL22202 – ADVANCED PROCESS CONTROL

(Chemical Engineering)

(Regulation 2022)

TIME:3 HOURS

MAX. MARKS: 100

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Describe the dynamic response of advanced control systems.	3
CO 2	Develop and design Internal Model based PID control system.	3
CO 3	Enumerate the control loop interaction and multi-variable control strategies.	3
CO 4	Acquire knowledge on discrete-time response of dynamic system.	3
CO 5	Design of digital feedback controllers.	4

PART- A(20x2=40Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	Differentiate feed forward from feedback control.	1	2
2.	Interpret the application of controller parameter gain scheduling.	1	3
3.	State reset time and settling time.	1	2
4.	State the significance of automatic tuning rule.	1	2
5.	Distinguish Internal Model Control with dead time compensator.	2	2
6.	Highlight the importance of model based in chemical industries.	2	2
7.	Prove that the IMC for first order with delay is lead-lag form.	2	3
8.	Elucidate the application of filters in IMC.	2	3
9.	Give any two examples of multivariable control.	3	2
10.	Show the paring option of 2x2 multivariable control system.	3	3
11.	List the importance of RGA in multivariable system.	3	2
12.	Comment on the decoupling of control loop.s	3	3
13.	State initial value theorem in Z-Transforms.	4	2
14.	List the need of sampler in digital control system.	4	2
15.	State pulse transfer function.	4	2
16.	Differentiate first order hold with zero order hold.	4	2
17.	Write the significance of Dahlin Algorithm in sampled data control system.	5	2
18.	Compare ISE and IAE in controller evaluation.	5	2
19.	Write digital equivalent PID Controller in position form of the control algorithm.	5	2
20.	State Schur-Cohn stability criterion in digital control system.	5	2

PART- B (5x 10=50 Marks)

		Marks	CO	RBT LEVEL
21. (a)	Describe the stirred tank reactor temperature based cascade control and	(10)	1	3
	derive the closed loop relationship for primary set point change.			

(**OR**)

- (b) Explain the feed forward control with the suitable example and highlight (10) 1 3 the requisites for employing a successful feed forward control.
- 22. (a) Illuminate the IMC filter design for improved disturbance rejection and (10) 2 3 derive the Output response of a second order system.

(**OR**)

(b) Design an IMC controller for a process which is first-order with transport (10) 2 3 lag

 $G = K \frac{e^{-\tau_d s}}{\tau s + 1}$

23. (a) Analyse the various decoupling strategies in multivariable control schemes (10) 3 4 with examples.

(OR)

(b) For the two-tank interacting liquid-level system (2 x 2 MIMO system) (10) 3 4 shown below, develop the closed block diagram with transfer function and record the open loop response.

a). For a step change in tank 1. b). For a step change in tank 2

24. (a) Compare the continuous systems and discrete systems in process control (10) 4 3 with suitable examples.

(**OR**)

- (b) Find the pulse transfer function of two tank non interacting level system (10) 4 3 with the transfer function, G(s) = 1/(s+1)(s+2)
- 25. (a) Explain the "ringing" phenomena in digital controller design. Compute the (10) 5 4 ringing free transfer function for $D(z) = K(1-0.5 Z^{-1})/(1+0.6Z^{-1})(1-Z^{-1})(1-0.7Z^{-1})$

(OR)

(b) Exemplify the design procedure of digital feedback control loops and (10) 5 4 analyse the stability constraints.

PART- C(1x 10=10 Marks)

(Q.No.26 is compulsory)

CO RBT LEVEL

Marks

26. Assess the development of Internal Model Control and compare the (10) 2 5 closed loop response for perfect model with no disturbances.
