Q. Code:289001

	Reg. No.													
M.E./ M. TECH DEGREE EXAMINATIONS, MAY 2024														
Second Semester														
CL22201-ADVANCED TRANSPORT PHENOMENA														
(Chemical Engineering)														
(Regulation 2022)														
Time: 3Hours			Max.Marks: 100											
CO1	Remember and apply the fundame systems.	ental kno	owled	ge ir	volv	ving	Equa	atio	ns of	f Cha	ange	for	Isotl	nermal

- CO2 Acquire and apply the fundamental knowledge involving Equations of Change for Non Isothermal systems.
- CO3 Gain and apply the fundamental knowledge for estimating the concentration distributions among different scenarios.
- CO4 Practice the skill of preparing model in macroscopic scale for Isothermal and Non Isothermal systems.
- CO5 Analyze and/or construct the macroscopic model for any Multi Component systems.

PART- A (20x2=40Marks) (Answer all Questions)

		CO	RBT LEVEL
1	Write the dimensionless form of equation of continuity.	1	2
2	Summarize the law of conservation of energy statement for non-isothermal system.	1	2
3	Write in your own words the conservation of momentum principle.	1	2
4	List the two observations you arrive while writing equation of continuity for incompressible flow.	1	2
5	Justify the use of Boussinesq approximation for analysing free convection problems.	2	4
6	Write the fourier number with its applications.	2	4
7	Give the mathematical expression of variation of temperature of fluid flowing at constant pressure.	2	2
8	Differentiate hydrodynamic& thermodynamic behavior fluids.	2	2
9	Sketch the concentration profile for component A in the flowing fluid over soluble flat wall.	3	2
10	Calculate the time smoothed concentration from the concentration reading	3	3
	8,13,12,20,19,17 g/ml measured at a same location for the fluid flow through circular pipe		
11		2	•
11	Correlate the relation of mass diffusivity with momentum and thermal diffusivity.	3	2
12	List the dimensionless number used to represent the enhancement of mass transfer	3	2
	in reacting systems.		
13	Compare macroscopic model and microscopic model on transport problems.	4	2

14	Analyze the Maxwellian (equilibrium) distribution in theory of diffusion in				
	colloidal suspensions.				
15	Relate Friction factor with Reynold's number,		4	2	
16	Distinguish friction factor and friction loss factor for a viscous flow.		4	2	
17	Write the significance of Hatta number.		5	2	
18	Connect the following governing equation of motion to the relevant physics		5	2	
	$\rho\left(v_x\frac{\partial v_x}{\partial x}+v_y\frac{\partial v_x}{\partial y}\right)=\rho v_e\frac{dv_e}{dx}+\mu\frac{\partial^2 v_x}{\partial y^2}+\overline{\rho}g_x\overline{\beta}(T-T_\infty)+\overline{\rho}g_x\overline{\zeta}(\omega_A-\omega_{A\infty})$				
19	Interpret the significance of dimensionless number in Interphase transfer.		5	3	
20	Analyze the macroscopic balance to solve steady state problems.		5	4	
	PART- B (5x 10=50Marks)				
71 (a) Compile the techniques used for solving analytically the partial	Marks	CO 1	BL 3	
21 (a	differential equations and explain any one technique with a case study	(10)	1	5	
	(OP)				
21 (b) Describe the pressure distribution of a creeping flow of fluid on sphere.	(10)	1	3	
22 (a) Derive an temperature distribution expression for a viscous fluid on conduction.	(10)	2	4	
	(OR)				
22 (b	A solid material occupying the space from $y = 0$ to $y = \infty$ is initially at temperature T0. At time $t = 0$, the surface at $y = 0$ is suddenly raised to temperature T1 and maintained at that temperature for $t > 0$. Devise the	(10)	2	4	
a a (time – dependent temperature profile 1 (y,t).	(10)	•		
23 (a	Devise the time smoothened equation of continuity of component A &	(10)	3	1	
	explain the analogy used.				
7 2 A	$(\mathbf{U}\mathbf{K})$	(10)	2	1	
23 (D	of mass fraction and malor fraction by abaying Eight's law of difference	(10)	3	1	
	of mass fraction and motal fraction by obeying Fick's law of diffusion.				
24 (a) A dilute HCl solution of constant density 999 kg/m ³ and viscosity	(10)	4	4	

0.001 kg/ms is to be pumped from tank 1 to tank 2 with no overall change in elevation. The pressure in the gas spaces of the two tanks are P1 = 1 atm & P2 = 4 atm. The pipe radius is 50 mm and the Reynolds number is 7.11 x 104. The average velocity in the pipe is to be 0.7 m/s and friction factor is 0.0049. Calculate the power must be delivered by the pump.

(**OR**)

- 24 (b) Derive a macroscopic mechanical energy balance for Non Isothermal (10) 4 4 system and explain different situations for evaluating the integral $\int dp$ between P₁ & P₂
- 25 (a) Gas A is absorbed by a stationery liquid solvent S, the solution has (10) 5 3 solute B. Species A reacts with B in an instantaneous irreversible rapid reaction according to the equation aA + bB => Products. Assume the Fick's second law adequately describes the diffusion processes, since A, B and the reaction products are present in solvent in low concentrations. Devise the model insensitive correlations for this system.

(**OR**)

25 (b) Develop the transfer coefficient for single phase and analytical (10) 5 3 expression mass transfer coefficient with suitable example.

PART- C (1x 10=10Marks)

(Q.No.16 is compulsory)

Marks CO BL

26. Water and air are separated by a mild steel plane wall. It is proposed to (10) 2 5 increase the heat transfer rate between these fluid by adding straight square fins of 1.27mm thick and 2.5 cm length, 1.27cm apart. The air

3

side and water side heat transfer coefficients are 11.4 and 256 W/m^2 . K. Evaluate and Analyze the percentage change in total heat transfer when the fins are placed on

- 1. Water side
- 2. Air side
- 3. Both sides