Q. Code:175921

Reg. No.							

B. E / B. TECH.DEGREE EXAMINATIONS, MAY 2024 Fourth Semester

CH22403 – CHEMICAL REACTION ENGINEERING-I

(Chemical Engineering)

(Regulation 2022)

TIME:3 COURSE OUTCOMES	HOURS MAX. MARKS STATEMENT	: 100 RBT LEVEI
CO 1	Analyze kinetic data and determine the rate of the reaction.	4
CO 2	Design ideal reactors for homogeneous reactions	5
CO 3	Evaluate reactor systems to carry out multiple reactions and recommend reactor/combination of reactors for the yield of desired product.	5
CO 4	Discuss the temperature effects and design non-isothermal reactors	5
CO 5	Develop mathematical models for conversion in non-ideal flow reactors	5
	PART- A (20x2=40Marks)	

(Answer all Questions)

		CO	RBT LEVEL
1	The rate constant of a zero order reaction is 0.2 mol/lit.hr. What would	1	3
	have been the initial concentration of the reactant if after half an hour its		
	concentration is 0.05 mol/lit?		
2	State Arrhenius equation and its significance.	1	2
3	Write down the rate equation of second order irreversible reaction in terms of	1	2
	concentration and conversion.		
4	For a certain first order reaction, rate constant is 0.0018sec ⁻¹ . Calculate the	1	3
	half life time of the reaction.		
5	Differentiate constant density reactor and variable density reactor.	2	2
6	State space time and space velocity.	2	2
7	Show how CSTR's in series approximate a PFR graphically.	2	2
8	Write down the performance equation of isothermal PFR.	2	2
9	Suggest a way to control the product distribution for irreversible parallel reactions.	3	2
10	State fractional yield in multiple reactions.	3	2
11	Give your comments on the product ratio $r_R/r_{S.}$	3	2
12	Give any two examples for series reactions.	3	2
13	Relate Gibbs free energy change and Equilibrium constant.	4	2

	Q. (Code:1'	75921	
14	An exothermic reversible reaction is conducted adiabatically, what is the	4	3	
	relationship between the equilibrium conversion and temperature?			
15	State 'hotspots' in non-isothermal reactor system.	4	2	
16	Analyze the conversion for an exothermic reaction $A+B\rightarrow C$, if temperature and	4	3	
	inert gas concentration is increased. A, B, C are all gasses.			
17	Compare micro fluid and macro fluid.	5	2	
18	Relate F curve with E curve.	5	2	
19	Discuss the reasons for non ideality in ideal reactors.	5	2	
20	Draw exit age distribution curve.	5	2	

PART- B (5x 10=50Marks)

			Marks	CO	RBT LEVEL
21(a)	(i)	Liquid A decomposes by first order reaction in a batch reactor. 50% of A is	(06)	1	3
		converted in 5 min. How long will it take to reach 75% conversion? Solve			
		the problem considering the reaction is first order.			
	(ii)	The half-life period for a certain first order reaction is 1.89×10^3 sec.	(04)	1	3
		Calculate the time needed for 1/4 of the reactants to be left behind.			
		(OR)			
(b)	Des	cribe Arrhenius theory of determining rate constant and justify it is better than	(10)	1	3
	colli	ision and transition theories.			
22(a)	Con	sider a gas-phase reaction 2A+R 2S with unknown kinetics. If a space	(10)	2	4
	velo	city of 11 min is needed for 90% conversion of A in a plug flow reactor, find			
	the	corresponding space-time and mean residence time or holding time of fluid in			
	the j	plug flow reactor.			
		(OR)			
(b)	Con	struct the performance equations of CSTR to calculate the space velocity and	(10)	2	4
	com	pare the reactor size calculation of CSTR with PFR.			

23(a) Discuss the quantitative product distribution of the given reaction in a mixed flow (10) 3 3 reactor and first order reaction followed by zero order: $A \xrightarrow{n=1}{\longrightarrow} B \xrightarrow{n=0}{\longrightarrow} C$

(OR)

Q. Code:175921
 (b) For the reaction data given in the following table, consider a series arrangement of (10) 3

 a mixed flow reactor and a plug flow reactor. If the intermediate conversion is 55% and the final conversion is 90%, formulate the best arrangement of reactors to obtain the smaller total volume (of reactors in series)?

3

3

(10)

5

 F_{A0} = 0.083mol/s.

X _A	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.85
-r _A (mol/	0.005	0.005	0.00	0.004	0.00	0.003	0.002	0.001	0.0012	0.00
l.s)	3	2	5	5	4	3	5	8	5	1

24.(a) A first order irreversible liquid phase reaction is carried out in MFR. The density (10) 4 3 of reaction mixture is 1.2 g/cm³ and the specific heat is 0.9 cal/g °C. The volumetric flow rate is 200cm³ / s and the reactor volume is 10 litres. K=1.8 x 10⁵ e-^{12000/RT}, s⁻¹. If the heat of reaction is -46000cal/mol, and feed temperature is 20 degree Celsius. What are the possible temperature and conversion for a stable, adiabatic operation with feed concentration of 4 mol/L?

(**OR**)

(b) Discuss the effect of temperature on equilibrium conversion for reversible and (10) 4 3 irreversible reactions with a graph.

25. (a) A first order liquid phase reaction is carried out in a reactor for which the results of (pulse) tracer test are given below. k=0.25 min-1

Time(minutes)	0	1	2	3	4	5	6	7	8	9	10	12	14
$C_{pulse}(g/m^3)$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0

Calculate the conversion using

i) Ideal PFR and ii) Ideal MFR

(**OR**)

(b) Calculate the mean residence time and the variance for a vessel from the following data (10) 5 3 which are obtained for a pulse input.

Time(minutes)	0	1	2	3	4	5	6	7	8	9	10	12	14
$E(\min^{-1})$	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0

(Q.No.26 is compulsory)

Q. Code:175921

	(2.1.10.2010 00.11 pailor 1)	Marks	CO	RBT I EVEI
26.	It is decided to produce 4000 kmol/day of ethylene glycol. The reactor is	(10)	2	5
	operated isothermally. A 15.05 kmol/m ³ solution of ethylene oxide in water			
	is fed to CSTR together with an equal volumentric solution of water			
	containing 85% by weight H_2SO_4 . If 82 % conversion is to be achieved, find			
	the volume of reactor. How many CSTRs, each having volume of 3 m^3			
	would be required if they are arranged in parallel? The first order reaction			

rate constant is 0.311 min⁻¹.