Q. Code:746453 Reg. No.

B.E./ B. TECH.DEGREE EXAMINATIONS, MAY 2024 Fourth Semester

CH22402 – MASS TRANSFER I

(Chemical Engineering)

(Regulation 2022)

(Psychrometric chart shall be provided)

TIME: 3	B HOURS MAX. MARKS	: 100
COURSE	STATEMENT	RBT
OUTCOMES		
CO 1	Apply the principles of diffusion in measuring diffusivity.	3
CO 2	Calculate different types of Mass transfer co-efficient and identify the relation between	3
	them.	
CO 3	Apply mass transfer concepts in designing humidification units.	3
CO 4	Calculate rate of drying using Mass transfer concepts.	3
CO 5	Apply mass transfer concepts in designing crystallization units.	3

PART- A (20x2=40Marks)

(Answer all Questions)

	(Answer an Questions)	CO	RBT
1.	Brief Knudson diffusion.	1	LEVEL 2
2.	State any two examples for Fick's first law of diffusion.	1	2
3.	Show the final expression of flux for diffusion of gases A and B plus convection.	1	2
4.	Differentiate molecular and total flux.	1	2
5.	Differentiate the significance of HETP and HTU.	2	2
6.	Brief surface renewal theory.	2	2
7.	Indicate the Colbourn analogy equation.	2	2
8.	List any four examples of stage-wise gas-liquid contactors.	2	2
9.	Differentiate sensible heat and latent heat.	3	2
10.	Outline the use of Psychrometric chart.	3	2
11.	Brief humid heat.	3	2
12.	Identify the significance of temperature approach in design of cooling towers.	3	2
13.	Sketch drying rate curve.	4	2
14.	Write the material and heat balance for the dryer.	4	2
15.	Mention any four applications of dryer.	4	2
16.	Differentiate bound and unbound moisture.	4	2
17.	Mention the material and energy balance equation of a Crystallizer.	5	2

	Q. Code:746453		
18.	State Mier's explanation.	5	2
19.	Differentiate saturated and supersaturated solution.	5	2
20.	State ΔL law of crystal growth.	5	2

PART- B	(5x 10=50Marks)	

		Marks	CO	RBT LEVEL
21. (a)	Derive the flux equation for diffusion through a varying cross sectional area.	(10)	1	3
	(OR)			
(b)	Ammonia gas diffuses through a 2 mm thick stagnant air film to a sulphuric	(10)	1	3
	acid stream, where it disappears immediately in a chemical reaction.			
	Calculate the rate of transfer into $1 m^2$ of surface of this acid if the			
	temperature is 20°C and the pressure is atmospheric. The concentration of			
	ammonia is 2 mole% at the outer edge of the air layer.			
	Data: Diffusivity of ammonia in air= $0.2 \text{ cm}^2/\text{s}$; The volume of 1kgmol of			
	ideal gas occupies 22.4 m ³ at STP.			
22. (a)	Explain two film theory and penetration theory with a neat sketch and show their applications in Mass Transfer.	(10)	2	3
	(OR)			
(b)	In a wetted wall column carbon dioxide is being absorbed from air by water	(10)	2	3
	flowing at 2 atm pressure and 25°C. The mass transfer coefficient k'y has			
	been estimated to be 6.78 X 10 $^{\text{-5}}$ kmol/m² s (mole fraction). Calculate the			
	rate of absorption if the partial pressure of carbon dioxide at the interface is			
	0.2 atm and the air is pure. Determine $k_{\rm y}$ and $k_{\rm G}.$			
23. (a)	Derive the design equation of Cooling tower using enthalpy concept.	(10)	3	3
	(OR)			
(b)	A stream of air at 37°C and 50% relative humidity flowing at a rate of 1250 kg/h is to be cooled to 15°C and dehumidified in a spray tower. The air is saturated as it emerges from the tower. Liquid water leaves the tower at 12°C. Calculate	(10)	3	3
	(i). The rate (kg/h) at which water must be removed and (5 Marks)			
	(ii). The heat duty on the cooler (kW). (5 Marks)			
24. (a)	Explain elaborately the working mechanism of vacuum dryer and list their	(10)	4	3

3

3

applications.

(OR)

(b) A granular material containing 40% moisture by weight (wet basis) is fed to (10) 4 a counter-current rotary dryer at a temperature of 20°C and is withdrawn at 35°C, containing 5% moisture (wet basis). The air supplied which contains 0.006 kg water/kg dry air, enters at 110°C and leaves at 38°C. The dryer handles 500kg/h wet stock. Radiation losses amount to 20 kJ/kg dry air used, determine the mass flow rate of dry air supplied to the dryer and the humidity of the exit air.

Specific heat capacity of water vapour = 2 kJ/kg.KSpecific heat capacity of dried solid = 0.8 kJ/kg Kspecific heat capacity of dry air = 1.00 kJ/kg K, specific heat capacity of water = 4 kJ/kg K.

- 25. (a) Discuss elaborately Circulating-liquid evaporator crystallizers and (10) 5 3 Circulating-magma vacuum crystallizer. (OR)
 - (b) Glauber's salt, Na₂SO₄.10H₂O, is to be produced in a Swenson-Walker (10) 5 Crystalliser by cooling to 290K a solution of anhydrous Na₂SO₄, which is saturated at 300K. If cooling water enters and leaves the unit at 275K and 290K, respectively, and evaporation is negligible, calculate the sections of crystalliser, each 3 m long, will be required to process 0.25 kg/s of the product. The solubilities of anhydrous Na₂SO₄ in water are 40 and 14 kg/100 kg water at 300K and 290K, respectively. The mean heat capacity of the liquor is 3.8 kJ/kg.K and the heat of crystallisation is 230 kJ/kg. For the crystallizer, the available heat transfer area is 3 m²/m length, the overall heat transfer coefficient is 0.15 kW/m².K and the molecular weights of Na₂SO₄.10H₂O and Na₂SO₄ are 322 and 142 kg/kgmol, respectively.

<u>PART- C (1x 10=10Marks)</u>

(Q.No.26 is compulsory)

		Marks	CO	RBT LEVEL
26.	Justify crystallization plays a very important role in sugar industry.	(10)	5	5

Q. Code:746453