Q. Code:424847

RBT LEVEL

2

3

4

4

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Third Semester

CH22302 – MOMENTUM TRANSFER

(Chemical Engineering) (Regulation 2022)

TIME: 3 HOURS MAX. MARKS: 100 STATEMENT Analyze the fluid properties and flow behavior of fluids. **CO**1 **CO 2** Apply various equations governing fluid statics and fluid kinematics. **CO 3** Discuss the pressure drops during the flow of fluids through different physical systems like pipes, valves, fixed and fluidized beds. **CO 4** Analyze several machineries used to transport the fluid and their performance including the flow measurements.

CO 5 Compare the fluid flow characteristics during the turbulent conditions using the 3 analogies.

PART- A (20 x 2= 40 Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	The drag force F on a sphere of diameter D in a fluid stream of low velocity V, density	1	2
	ρ and viscosity μ is given by the equation $F=3\pi\mu DV$ + (9/16) $\rho V^2D^2.$ Check the		
	dimensional consistency of the equation.		
2.	The space between two parallel plates kept 2 mm apart is filled with an oil of dynamic	1	3
	viscosity 0.2 Pa.s. Calculate the shear stress on the fixed lower plate, if the upper plate		
	is moved with a velocity of 2.5 m/s.		
3.	Elucidate the effect of temperature and pressure on viscosity of fluids.	1	2
4.	If the apparent viscosity of a fluid is given by the relation $\mu = 0.03 \left \frac{dy}{dx} \right ^{0.25}$ identify the	1	3
	type of fluid and sketch the relationship between shear stress Vs velocity gradient.		
5.	Distinguish between pressure and pressure head.	2	2
6.	Illustrate the various forces acting on a fluid at rest.	2	2
7.	Write the equation for pressure at a point P (x – $\delta x/2$, y, z) in a fluid element.	2	2
8.	Determine the head loss in a 90 [°] elbow if the flow velocity is 0.3 m/s. Use $k = 0.9$.	2	3
9.	Calculate the friction factor for a turbulent flow having Reynolds number 15,480.	3	3
10.	Elucidate on the loss of head due to a sudden enlargement in a flow through a conduit.	3	2
11.	Distinguish between shear drag and pressure drag with suitable illustrations.	3	2
12.	Differentiate superficial and interstitial velocity.	3	2

COURSE OUTCOMES

		Q. Code:424847		
13.	Write the working principle of a rotameter.		4	2
14.	Classify the different types of pumps.		4	2
15.	Write the working principle of a diaphragm pump.		4	2
16.	Annotate NPSH and write its significance for pump operation.		4	2
17.	Show that the Reynolds number is dimensionless and write its physical meaning		5	2
18.	Elucidate the applications of Froude and Euler model law.		5	2
19.	Explicate the characteristics of turbulent flow.		5	2
20.	Write a short note on Rayleigh's method of dimensional analysis.		5	2

PART- B (5x 10=50 Marks)

			Marks	CO	RBT LEVEL
21.(a)	(i)	An oil film of viscosity μ and thickness h << R, lies between a solid wall	(5)	1	3
		and a circular disc. The disc is rotated steadily at an angular velocity Ω .			
		Both the velocity and shear stress varies with the radius. Derive an			
		expression for the torque.			
	(ii)	Derive the velocity profile equation for fluid motion between parallel	(5)	1	3
		plates shearing a liquid if the lower plate is stationary. If the shear stress			
		is 43.5 Pa, viscosity of the fluid is 0.29 kg/m.s and the distance between			
		the plates is 2 cm, calculate the velocity.			
		(OR)			
(b)	(i)	A torpedo moving in fresh water at 10°C has a minimum pressure point	(4)	1	3
		given by the equation $p_{min} = p_o - 0.35 \rho v^2$, where p_o is 115kPa. Determine			
		the velocity at which cavitation bubbles form on the torpedo if the vapour			
		pressure of water is 1.227 kPa.			
	(ii)	Oil is contained between two identical parallel plates of 2 m^2 area each.	(6)	1	3
		The top plate is pulled to the left (-x direction) with a force of 0.43 N at a			
		velocity of 0.3 m/s. The bottom plate is pulled in the opposite direction			
		with a force of 0.15 N at a velocity of 0.15 m/s. Calculate the viscosity of			
		the oil if the plates are 5 mm apart.			
22.(a)	Deri	ive the Bernoulli's equation for an incompressible flow of a fluid along a	(10)	2	3

(OR)

stream line.

- (b) A U-tube differential manometer is connected between two pipes 'x' and 'y'. (10) Pipe 'x' contains CCl₄ with a specific gravity 1.59, under a pressure of 103 kN/m² and pipe 'y' contains oil with a specific gravity 0.8 under a pressure of 172 kN/m². Pipe 'x' is 3 m above pipe 'y'. The mercury level in the limb connected to the pipe 'x' is 1.5 m below the centerline of pipe 'y'. Determine the manometer reading shown by a centimeter scale attached to it.
- 23.(a) A siphon consisting of a 25 cm diameter tube is used to drain water from a (10) 3 3 tank. The outlet end of the tube is 2 m below the water surface in the tank. Calculate the discharge if the peak point of the siphon is 1.4 m above the water surface in the tank. Estimate the pressure of the fluid at the peak point of the siphon.

O. Code:424847

2

3

(OR)

- (b) Derive an expression for finding the volumetric flow rate when an (10) 3 3 incompressible fluid flows through a pipe under laminar conditions.
- 24.(a) Analyze the construction, working and limitations a Venturimeter. Derive the (10) 4 4 expression for volumetric flow rate through the Venturimeter.

(OR)

- (b) Analyze construction, working, advantages and limitations of positive (10) 4 4 displacement pumps with neat illustrations.
- 25.(a) The power required by an agitator in a tank is a function of the diameter of the (10) 5 3 impeller, rpm of the impeller, Viscosity of the liquid, Density of the liquid and acceleration due to gravity. From dimensional analysis, formulate a relationship for power consumption. The power consumption is found experimentally to be proportional to the square of speed of rotation.

(OR)

(b) A sphere advancing at 1.8 m/s in a stationary mass of water experiences a drag (10) 5 3 of 4.5 N. Calculate the flow velocity required for dynamic similarity of another sphere twice the diameter placed in a wind tunnel. Determine the drag at this velocity if the kinematic viscosity of air is 13 times that of water and its density is 1.25 kg/m³.

Q. Code:424847

PART- C (1x 10=10Marks)

(Q.No.26 is compulsory)

	Marks	СО	RBT
			LEVEL
Water is to be pumped at the rate of 50 litre/min from a storage tank restin	ng (10)	2	5
on the floor, to the top of an overhead tank. The suction and delivery lin	es		
are connected by a 5 cm diameter pipe. The point of discharge is at a level	of		
15 m above the flow. The water level in the storage tank is maintained at	a		

constant head of 1.6 m. Assume frictional loss is 2.5 J/N and the efficiency of the pump is 75%. Determine the horse power and the pressure developed by the pump.

26.
