	Reg. No.						
	B.E./ B. TECH.DEGREE EXAMINATIONS, MAY 2024						
Third Semester							
CH22301 – CHEMICAL PROCESS CALCULATIONS							
(Chemical Engineering)							
(Regulation 2022)							
	(USE OF PSYCHROMETRIC CHART IS PERMITTED)						
TIME:3	HOURS MAX. MARKS: 100						
COURSE OUTCOMES	STATEMENT R	≀BT EVEL					
CO 1	Interpret the data presented in different unit systems and apply various gas laws to calculate the unknowns in a given system	3					
CO 2	O 2 Build basic knowledge on various unit operations and processes and perform material 3 balances for steady and unsteady state chemical systems.						
CO 3	Provide insight into the concepts and calculations associated with gases which involves two phase systems.	3					
CO 4 CO 5	Perform energy balance calculations for steady and unsteady state chemical processes. Implement various methods used for analyzing combustion process and demonstrate the ability to understand process simulators.	4 4					

PART- A (20x2=40Marks)

		CO	RBT LEVEL
1.	Calculate the volume of 15 kg of Chlorine at a pressure of 0.9 bar and 293 K.	1	3
2.	Differentiate Molarity and Normality.	1	2
3.	State Dalton's law.	1	2
4.	Define: Vapour Pressure.	1	2
5.	Identify the limiting reactant and excess reactant when 12 kg of Carbon reacts with 32	2	3
	kg of Oxygen to form Carbon-di- Oxide.		
6.	In an evaporator a dilute solution of 4% NaOH is concentrated to 25% NaOH. Calculate	2	3
	the evaporation of water per kg of feed.		
7.	SO_2 is produced by the reaction between copper and sulphuric acid. How much Cu must	2	3
	be used to get 10 kg of SO ₂ ?		
8.	Mention the significance of Recycling operation.	2	2
9.	Relate absolute humidity and molal humidity.	3	2
10.	Define: Saturation.	3	2
11.	Cite the difference between wet bulb temperature and dry bulb temperature.	3	2
12.	Annotate the significance of psychrometric chart.	3	2

Marks

СО

RBT LEVEL

13.	State Kopp's rule.	4	2
14.	Differentiate specific heat and latent heat.	4	2
15.	Write the unsteady state energy balance equation for a batch reactor.	4	2
16.	Define: Theoretical flame temperature.	4	2
17.	Relate GCV and NCV.	5	2
18.	List any two process simulators.	5	2
19.	Highlight the importance of ultimate analysis.	5	2
20.	Give the applications of ORSAT analysis.	5	2

PART-B (5x 10=50Marks)

21.(a) Chimney gas has the following composition: $CO_2 : 9.5\%$, CO : 0.2%, $O_2 :$ (10)139.6% and $N_2 : 80.7\%$. Using ideal gas law, calculate:

- (a) its weight percentage
- (b) volume occupied by 0.5 kg of gas at 30 $^\circ$ C and 760 mm Hg.
- (c) density of the gas in kg/m^3 at condition of (b)
- (d) specific gravity of the gas mixture.
- (Density of air may be taken as 1.3 g/cc)

(OR)

- (b) A solution of caustic soda in water contains 20% NaOH by weight. The (10) 1 3 density of the solution is 1196 kg/m³. Find the molarity, normality and molality of the solution.
- 22.(a) The waste acid from a nitrating process contains 23% HNO₃; 57% H₂SO₄; (10) 2 3 20% water. This acid is to be concentrated to 27% HNO₃, 60% H₂SO₄ by addition of 93% H₂SO₄ and 90% HNO₃. Calculate the weight of acids needed to obtain 1000 kg of desired acid.

(OR)

(b) Pure CO₂ may be prepared by treating limestone with sulphuric acid. The (10) 2 3 limestone used in the process contains CaCO₃, MgCO₃ and inert compounds. The acid used contains 12% H₂SO₄ by weight. The residue from the process had the following composition: CaSO₄ : 8.56%, MgSO₄ : 5.23%, H₂SO₄ : 1.05%, Inert : 0.53%, CO₂ : 0.12%, H₂O : 84.51%. During the process, the

Q. Code:625074

mass was warmed where CO₂ and H₂O got removed.

Calculate the following:

- (a) The analysis of limestone
- (b) The % excess acid used
- 23.(a) Air at a temperature of 20°C and pressure 750 mm Hg has a relative (10) 3 3 humidity of 80%.
 - (a) Calculate the molal humidity of air.
 - (b) Calculate the humidity of this air if its temperature is reduced to 10°C and
 - its pressure increased to 35 psi, condensing out some of the water.
 - (c) Calculate the weight of water condensed from 1000 ft³ of gas.
 - (d) Calculate the final volume of wet air leaving.

Data: Vapour pressure of H₂O at 20°C =17.5 mm Hg and at 10° C = 9.2 mm Hg.

(**OR**)

- (b) An air (B)-water (A) sample has a dry bulb temperature of 50 °C and a wet (10) 3 3
 bulb temperature of 35 °C. Estimate its molal humidity, partial pressure of water, percentage humidity, humid heat and the relative saturation at a total pressure of 1 atm. Molecular weight of air = 28.84
- 24.(a) A natural gas has the following composition on mole basis: CH₄ 84 %, (10) 4 3
 C₂H₆ 13 % and N₂ 3 %. Formulate an empirical expression for heat to be added and calculate the heat to be added to raise the temperature of 10 kmol of natural gas from 298 K to 523 K using heat capacity data given below.
 Cp° = a + bT + CT² + dT³, kJ/kmol.K

Gas	А	b x 10 ³	c x 10 ⁶	d x 10 ⁹
CH ₄	19.2494	52.1135	11.973	-11.3173
C_2H_6	5.4129	178.0872	-67.3749	8.7149
N ₂	29.5909	-5.141	13.1829	-4.968

(**OR**)

(b) Dry methane and dry air at 298 K and 1 bar pressure are burnt with 100% (10) 4 3 excess air. The standard heat of reaction is -802 kJ/g mole of methane.

Marks

(10)

СО

1

RBT LEVEL

5

Determine the final temperature attained by the gaseous products if combustion is adiabatic and 20% of heat produced is lost to the surroundings. Data: C_{pm} values (J/g mole K) for the components are: O_2 : 31.9, N_2 : 32.15, H_2O : 40.19, CO_2 : 51.79.

25.(a) The Orsat analysis of the flue gases from a boiler house chimney gives (10) 5 3 CO₂:11.4%, O₂:4.2% and N₂:84.4% (mole %). Assuming that complete combustion has taken place, (a) Calculate the % excess air, and (b) Analyze the C:H ratio in the fuel.

(OR)

(b) The ultimate analysis of a coal sample is given as C - 61.5%, H₂ - 3.5%, S - (10) 5 3
0.4%, Ash 14.2%, N₂ - 1.8% and rest oxygen. Calculate the theoretical oxygen requirement per unit weight of coal and the Orsat analysis of flue gases, if coal is burnt with 90% excess air.

PART- C (1x 10=10Marks)

(Q.No.26 is compulsory)

26. The average molecular weight of a flue gas sample is calculated by two different engineers. One engineer used the correct molecular weight of N_2 as 28, while the other used an incorrect value of 14. They got the average molecular weight as 30.08 and the incorrect one as 18.74. Calculate the % volume of N2 in the flue gases. If the remaining gases are CO₂ and O₂ calculate their composition also. Evaluate the error percentage of the faulty calculation.
