MAY MADES. 100

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Sixth Semester

CH18601 – MASS TRANSFER II

(Chemical Engineering)

(Regulation 2018/2018A)

TIME. 2 HOUDS

I IVIE: 5 HOURS		MAA. MAKKS: 100
COURSE	STATEMENT	RBT
OUTCOMES		LEVEL
CO 1	Determine the number of theoretical stages in absorption tower.	5
CO 2	Evaluate different types of distillation process.	5
CO 3	Apply Mass Transfer concepts in Liquid Liquid Extraction.	3
CO 4	Assess batch and continuous leaching process.	5
CO 5	Analyse different types of separation process.	4

PART- A (10 x 2 = 20 Marks) (Answer all Ouestions)

	(Alliswer all Questions)	CO	RBT LEVEL
1.	Explain the absorption factor graphically.	1	LEVEL 3
2.	List the pros and cons of using $L_{s, min}$ in the absorption tower.	1	2
3.	Explain T-x,y boiling point diagram.	2	2
4.	Write the 'q' value for the feed conditions of Sub - cooled liquid and Superheated	2	3
	vapour.		
5.	State plait point and binodal solubility curve.	3	2
6.	When do you prefer liquid-liquid extraction?	3	2
7.	List the various factors affecting the rate of leaching operation.	4	2
8.	Briefly explain heap leaching with example.	4	2
9.	Discuss Freundlich equation for adsorption.	5	2
10.	Explain the principle of ion exchange.	5	2
	$\mathbf{D} \mathbf{A} \mathbf{D} \mathbf{T} = \mathbf{D} \left(5 = 14 - 70 \mathbf{M}_{\text{outlies}} \right)$		

PART- B (5 x 14 = 70 Marks)

Marks CO RBT LEVEL

1

(14)

3

11. (a) It is desired to absorb 90 % of acetone from a gas containing 1 mol% acetone in air in a counter current stage tower. The total inlet gas to the tower is 30 kmol/h and the total inlet pure water flow to be used to absorb acetone is 90 kmol/h. The process is to operate isothermally at 300K and a total pressure of 1 atm. The equilibrium relation is y=2.53 x, where x and y denote the molfractions of acetone in liquid and vapour phases. Determine the number of theoretical stages required for this operation by graphical method.

(OR)

3

- (b) An air-ammonia mixture containing 5% ammonia by volume is absorbed in (14) 1 water using a packed tower at 20°C and 1 atm pressure to recover 98% ammonia and the inert gas flow rate is 1200 kg /hr m². Determine
 (i) Minimum mass velocity of liquid.
 (ii) Number of transfer units using 1.25 times the minimum liquid flow rate. The equilibrium relationship for the system is given by y = 1.154 x where x and y are expressed in mole fraction units
- 12. (a) A mixture containing benzene and toluene with 40% benzene and 60% (14) 2 3 toluene is to be separated in a fractionating column to give product containing 96% benzene and bottom product containing 95% toluene. Feed is a mixture of two-third vapor and one-third liquid. Find the number of theoretical stages required if the reflux ratio of 1.5 times the minimum is used. (Relative volatility = 2.5)

(OR)

(b) A stream of aqueous methanol having 45 mol% methanol is to be separated (14) 2 3 into a top product having 96 mol% methanol and a bottom product containing 4 mol% methanol. The feed is at its bubble point and the operating pressure is 101.3 kPa. A reflux ratio of 1.5 is suggested. (i) Determine the number of ideal trays. (ii) Find the actual number of trays if the overall tray efficiency is 40% (iii) find the feed plate location.

VLE data:

X	0	0.02	0.06	0.08	0.1	0.2	0.4	0.6	0.8	1
У	0	0.134	0.304	0.365	0.418	0.579	0.729	0.825	0.915	1

13. (a) (i) Discuss the effect of temperature on LLE diagram with sketch (7) 3 3
(ii) Explain with a neat sketch the principle and working of any one LLE (7) 3 3
column

(**OR**)

(b) Explain the equilateral triangular diagram for the systems of three liquids - (14) 3 3
 one pair partially soluble with example.

14. (a) A 100 tonnes of underflow feed containing 20 tonnes of solute, 2 tonnes of (14) 4 3 water, 78 tonnes of inerts are to be leached with water to give an overflow of concentration, 15% solute. 95% recovery is desired. The underflow from each stage carries 0.5 kg of solution / kg of inert. Estimate the number of stages needed.

(OR)

- (b) Demonstrate the graphical method of finding stages for variable underflow (14) 4 3
 system of multistage countercurrent leaching
- 15. (a) Enumerate the characteristics to be possessed by industrial adsorbents. (14) 5 3Write any one method of preparation of adsorbents.

(OR)

- (b) Explain the following: (7+7) 5 3
 - (i) osmosis and reverse osmosis

16.

(ii) Ion exchange and Liquid membranes

$\frac{PART-C (1 \times 10 = 10 \text{ Marks})}{(0 \text{ No 16 is compulsory})}$

(Q.No.10 is compulsory)	Marks	CO	RBT LEVEL
Explain the principle of membrane technology and its impact on	(10)	5	5
applications in desalination plants			
