Reg. No.

B. E / B. TECH.DEGREE EXAMINATIONS, MAY 2024 Fifth Semester

CH18502 – CHEMICAL REACTION ENGINEERING-I

(Chemical Engineering)

(Regulation 2018 / 2018A)

TIME:3 HOURS

MAX. MARKS: 100

COURSE **OUTCOMES**

STATEMENT

- Attain familiarity in the fundamentals of reaction engineering and analyze the kinetic **CO1** 3 data, to determine the rate of reaction.
- Perform calculations associated with design equation of reactors and determine the **CO 2** 3 volume of a reactor for a given conversion and vice-versa for single reactions.
- **CO 3** Evaluate systems and perform calculations for multiple reactions, to suggest 3 reactor/combination of reactors for the yield of desired product.
- **CO 4** Investigate the temperature effects associated with the reactors during reaction and 3 determine conversion.
- Explore the various non-idealities in the real reactors and modeling suitable reactors **CO** 5 4 incorporating the effects of various non-idealities.

PART- A (10x2=20Marks)

(Answer all Questions)

		CO	RBT LEVEL
1	State the variables affecting rate of a reaction.	1	2
2	Compare pseudo first order reaction with pseudo second order reaction with example.	1	2
3	Differentiate constant density and variable density reactors.	2	2
4	State half life period of second order reaction.	2	2
5	Sketch the contacting patterns of reactants at various combinations of concentrations in continuous operation.	3	3
6	Write the significance of selectivity in multiple reactions.	3	2
7	Identify the effect of temperature on K_{eq} and X_{Ae} .	4	3
8	Differentiate adiabatic and isothermal operation.	4	2
9	Build exit age distribution curve.	5	3
10	List the models used to characterize the nonideal flow in a reactor.	5	2

RBT

LEVEL

Q. Code: 313701

	PART- B (5x 14=70Marks)	Marks	CO	RBT
11. (a)	(i) The thermal decomposition of nitrous oxide (N_2O) in the gas phase at 1030 K is studied in a constant volume vessel at various initial pressures of N ₂ O. The half-life data so obtained are as follows: Reaction involved is $2N_2O$ $2N_2 + O_2$. Determine the rate equation that fits the data	(10)	1	LEVEL 3
	 (ii) Find the first-order rate constant for the disappearance of A in the gas reaction 2A R if, on holding the pressure constant, the volume of the reaction mixture, starting with 80% A, decreases by 20% in 3 min. 	(04)	1	3
	(OR)			
(b)	Derive the rate equation for unimolecular first order reaction and bimolecular - second order reaction for constant volume process.	(14)	1	3
12. (a)	An aqueous feed of A and B (400 liter/min, 100 mmol A/liter, 200 mmol B/liter) is to be converted to product in a plug flow reactor. The kinetics of the reaction is represented by mol A+B gives R, $-r_{A=}$ 200 C _A C _B mol/liter.min. Find the volume of reactor needed for 99.9% conversion of A to product.	(14)	2	3
	(OR)			
(b)	Analyse the value addition of recycle stream in a reactor and Derive and the performance equation of a recycle reactor along with graphical representation	(07)	2	3
13. (a)	Describe the qualitative treatment of product distribution in plug flow reactor for the following reactions. a). Reactions in series. b).Reactions in parallel.	(14)	3	3
/ • 1	(OR)	(-	-
(b)	Liquid reactant A decomposes as per the following reactions in parallel $A \rightarrow R$, $A \rightarrow S$, $A \rightarrow T$, With $r_A=1$, $r_S=2C_A$, $r_T = C_A^2$	(14)	3	3
	Determine the arrangement of reactors that would produce most S in a 2			
	flow system where recycle of unreacted feed is not possible. Find $C_{s,Total}$ for			
	this arrangement for $C_{A0} = 4$.			

14. (a) Calculate the heat of reaction for the synthesis of ammonia from nitrogen (14) 4 3 and hydrogen at 150 degree celsius in kJ/mol H₂ reacted and kJ/mol N₂ reacted. N₂ + H₂ gives 2 NH₃. Standard heat of ammonia formation is - 11020 cal/mol N₂. Mean heat capacities of reaction components hydrogen, nitrogen and ammonia are 6.992, 6.984 and 8.92 repectively. C_p of each reacting component is expressed as a quadratic function of temperature. Cp (H₂) : 6.946-0.196 x 10⁻³ T + 0.476 x 10⁻⁶ T²; Cp (N₂) : 6.457+1.39 x 10⁻³T-0.069 x 10⁻⁶T²; Cp (NH₃) : 5.92+8.963 x 10⁻³T-1.764 x 10⁻⁶T²

Q. Code: 313701

- (b) Describe the optimum temperature progression for reversible endothermic (14) 4 3 reaction with graph.
- 15. (a) A first order liquid phase reaction is carried out in a reactor for which the (14) 5 4 results of (pulse) tracer test are given below. k=0.25 min⁻¹. Calculate the conversion using ideal PFR, Ideal MFR and Tanks in series model

Time(minutes	0	1	2	3	4	5	6	7	8	9	10	12	14
)													
C _{pulse} (g/m ³)	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0

(**OR**)

(b) The concentration readings in the following table represent a continuous (07) 5 4 response to a pulse input into a closed vessel which is to be used as a chemical reactor. Calculate the mean residence time of fluid in the vessel t, and tabulate and plot the C-curve and exit age distribution E.

t(min)	0	1	2	3	4	5	6	7	8	9	10
C _{pulse}	0	0.1	0.2	0.3	0.4	0.5	0.45	0.4	0.35	0.3	0.25
(mg/l)											

PART- C (1x 10=10Marks)

(Q.No.16 is compulsory)

		Marks	CO	RBT LEVEL	
16.	First order reversible aqueous reaction A reversibly forms R	(10)	4	5	
	$-r_A = k_1 C_A - k_2 C_R$; $k_1 = 34 \times 10^6 exp$ (-48900/RT) min ⁻¹ ; $k_2 = 1.57 \times 10^{18} exp$				

(-123800/RT) min⁻¹

Where E is in J/mol is to be carried in PFR. For maximum permissible feed temperature of 95 °C (368 K) (maximum permissible operating temperature of 95 °C) and feed rate of 1000 mol/min of reactant A. What is the optimum temperature progression in a PFR? A conversion of 80% is required and feed concentration of A is $C_{A0} = 4$ mol/lit and $C_{R0}=0$. Also calculate the space time and volume needed for 80% conversion of a feed of F_{A0} =1000 mol/min with C_{A0} = 4 mol/lit and C_{R0} =0.
