Q. Code:983249

Reg. No.

B.E./ B. TECH. DEGREE EXAMINATIONS, MAY 2024

Fourth Semester

CE22403 – FOUNDATION ENGINEERING

(Civil Engineering)

(Regulation 2022)

TIME:3 HOURS

MAX. MARKS: 100

СО

RBT

COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Plan and execute a detailed site investigation to select geotechnical design parameters and type of foundation.	3
CO 2	Design shallow foundations, its component or process as per the needs and specifications.	3
CO 3	Design combined footings and raft foundations, its component or process as per the needs and specifications.	3
CO 4	Design deep foundations, its component or process as per the needs and specifications.	3
CO 5	Design retaining walls, its component or process as per the needs and specifications.	3
05	Design retaining wans, its component or process as per the needs and specifications.	3

PART- A (20x2=40Marks)

(Answer all Questions)

1.	What is meant by significant depth?	1	LEVEL 2
2.	What are the different factors to be considered for site investigation?	1	2
3.	What is meant by liquefaction?	1	2
4.	Differentiate disturbed and undisturbed soil sample.	1	2
5.	What is meant by "Net ultimate bearing capacity"?	2	2
6.	Why differential settlement occurs in the soil when it loaded?	2	2
7.	What are the different factors considered in IS code method to arrive the bearing capacity of soil?	2	2
8.	List the limitations of "Plate load test".	2	2
9.	When the trapezoidal combined footing will be recommended?	3	2
10.	Differentiate "Strip footing" and "Strap footing".	3	2
11.	What is meant by "Floating foundation"?	3	2
12.	At what circumstances mat foundation will be recommended? List the different types of mat foundation.	3	2
13.	What is meant by "Negative skin friction"?	4	2
14.	What is meant by "Pile group efficiency"?	4	2

Q. Code:983249

15.	How to arrive uplift capacity of pile foundation?	4	2
16.	Differentiate "Bored pile" and "Driven pile".	4	2
17.	What is meant by "Coefficient of active earth pressure" and "Coefficient of passive	5	2
	earth pressure"?		
18.	How to arrive the "Depth of tension crack"?	5	2
19.	List the different stability to be check to design the retaining walls.	5	2
20.	What is meant by "Critical depth of vertical cut"?	5	2

PART- B (5x 10=50 Marks)

		Marks	CO	RBT LEVEI
21. (a) Ex	xplain any two types of samplers in detail with neat sketch. Highlight its	(10)	1	2
m	nerits and demerits.			
	(OR)			
(b) E:	xplain in detail about "Seismic refraction method" of geophysical method	(10)	1	2
W	vith neat sketch.			
22. (a) D	etermine the ultimate bearing capacity of a circular footing having the	(10)	2	3
di	iameter of 1.5 m and having the depth of foundation of 1 m. Use Terzaghi's			
th	neory and assume general shear failure. Take $\phi = 35$ degree, $\gamma = 18$ kN/m ³			
ar	nd c = 15 kN/m ² . (For ϕ = 35 degree, N _c = 57.8, N _q = 41.4 and N _γ = 42.4).			
A	lso determine the safe bearing capacity with the factor of safety of 3.			
	(OR)			
(b) A	square footing of 2 m x 2 m is built in a sand deposit of saturated unit	(10)	2	3
W	reight of 24 kN/m ³ and the unit weight above water table of 20 kN/m ³			
ha	aving an angle of shearing resistance of 36 degree. The depth of the base of			
th	ne footing is 1.5 m below the ground surface. Calculate the safe load that			
ca	an be carried by a footing for following cases with a factor of safety of 3			
ag	gainst shear failure. Use Terzhagi's Analysis. (For $\emptyset = 36^\circ$, N _c =65.4,			

 N_q =49.4, N_s =54.0)

Case 1 : Water Table at Ground Level

Case 2 : Water Table at Base of the Footing

23. (a)	Explain the different types of mat foundation in detail with neat sketch.	(10)	3	2
	Highlight the application of each type of mat footing.			
	(OR)			
(b)	Explain the step by step procedure to proportionate the rectangular combined	(10)	3	2
	footing with neat sketch.			
24. (a)	Elaborate the working principle and procedure of "Pile load test" in detail	(10)	4	2
	with neat sketch. Also discuss how to arrive the ultimate pile capacity using			
	the load settlement curve?			
	(OR)			
(b)	Explain the following in detail	(10)	4	3
	A. Feld's rule to arrive pile group capacity			
	B. Under reamed pile			
	C. Hiley's method to arrive pile capacity			
25. (a)	Determine the active earth pressure acting on the 5 m height retaining wall	(10)	5	3
	having the two soil layers. The water table is at 2.5 m from top of the wall.			
	Take $\gamma_w = 10 \text{ kN/m}^3$. The soil parameters in each soil layer as follows			
	Top Layer - 0 to 2.5 m - $\phi = 35$ Degree & $\gamma = 17$ kN/m ³			
	Bottom Layer - 2.5 to 5.0 m - ϕ = 38 Degree & γ_{sat} = 18 kN/m ³			
	(OR)			
(b)	The retaining wall of 4 m height retains the soil having the angle of internal	(10)	5	3
	friction, cohesion and unit weight of 12 degree, 20 kN/m ² and 18 kN/m ³ .			
	Determine the depth of tension crack and the active earth pressure acting on			
	the wall.			
	<u>PART- C (1x 10=10Marks)</u> (Q.No.26 is compulsory)			
		Marks	CO	RBT LEVEL
26.	A group of 16 piles arranged in a square pattern with the diameter and length	(10)	4	3
	of each pile as 30 cm and 12 m respectively. Take the shear strength of the			

clayey soil, pile spacing, adhesion factor and factor of safety as 50 kN/m², 100 mm (C/C), 0.70 and 2.5. Determine the load carrying capacity of the pile group.

Q. Code:983249