Q. Code: 989008

Reg. No.							

B.E./ B. TECH.DEGREE EXAMINATIONS, MAY 2024

Sixth Semester

CE18602 - WASTEWATER ENGINEERING

(Civil Engineering)

(Regulation 2018/2018A)

TIME:3 HOURS		MAX. MARKS: 100					
COUL				RBT LEVEL			
CO 1							
	compute the sizes of sewerage system components.						
CO 2	CO 2 Compute the sizes of the units and discuss the unit operations and processes that are use						
CO 3	in primary treatment of sewage and onsite sanitation.						
COS	CO 3 Compute the sizes of the units and explain the unit operations and processes that are involved in secondary treatment of sewage.						
	CO 4 Describe the advanced sewage treatment technology and reuse of sewage.						
CO 5	CO 5 Describe the self-purification process of streams and calculate the sludge generation						
	explain the sludge management. PART- A(10x2=20Marks)						
	(Answer all Questions)						
	(Time wor and Queenlene)		CO	RBT			
1.	Identify the significance of BOD/COD ratio.		1	LEVEL 2			
2.							
3. What is meant by detritus tank?				2 2			
•							
4. List out the functions of primary settling tank.				2 2			
5.	5. Discuss the term re-circulation factor in trickling filter.						
6.	6. Identify the modified forms of conventional Activated Sludge Process.						
7.	7. Explain how gas liquid and solids are separated from effluent in upflow anaerobic 4						
	sludge blanket reactor.						
8.	8. List out the advantages of sequencing batch reactor.						
9. Discuss how sewage can be used for farming?				2			
10.	What are the compositions of sludge before it is thickened?		5	2			
	PART- B (5x 14=70Marks)						
		Marks	CO	RBT LEVEL			
11. (a	Discuss in detail the various sewer appurtenances with neat sketches.	(14)	1	3			
	(OR)						
(b	BOD of a sewage incubated for 3 days at 27°C was found to be 285 mg/l.	(14)	1	3			
	Find the value of 5 day 20°C BOD. Assume deoxygenating constant at 20°						
	C as 0.16 per day.						

Q. Code: 989008

12. (a)	Explain the various unit operations and processes involved in a STP with	(14)	2	3					
	the help of process flow diagram.								
(OR)									
(b)	Design a septic tank with dispersion pit for a hostel with a population of	(14)	2	3					
	200 and peak discharge of 150 lit per min. Assume suitable design criteria.								
13. (a)	Explain the working principle of oxidation pond with advantages and	(14)	3	3					
	disadvantages and draw the typical process flow diagram.								
(b)	(OR) Design a complete mixed activated sludge process aeration tank for	(14)	3	3					
()	treatment of 4 MLD sewage having BOD concentration of 180 mg/L. The	,							
	effluent should have soluble BOD of 20 mg/L or less. Consider the								
	following: MLVSS/MLSS = 0.8, Return sludge SS concentration = 10000								
	mg/L, MLVSS in aeration tank = 3500 mg/L, Mean cell residence time								
	adopted in design is 10 days.								
	adopted in design is 10 days.								
14. (a)	With a neat sketch explain the working principle of Membrane Bioreactor	(14)	4	2					
1 1. (a)	and UASB reactor.	(11)	•	-					
	(OR)								
(b)	Explain the various treatment methods available for extracting the	(14)	4	2					
(~)	biological nitrogen and biological phosphorous from effluent.	()	-	_					
	ofological mateger and ofological phosphorous from critacia.								
15. (a)	Name the various actions involved in the self-purification process of a	(14)	5	2					
()	stream and explain them briefly.	()		_					
	(OR)								
(b)	Explain in detail about the working and design principles of gravity	(14)	5	2					
(2)	thickening.	(1.)		-					
	PART- C (1x 10=10Marks)								
	м.	CC	DDE						
		Marks	CO	RBT LEVEL					
16.	Design a screen chamber for a proposed sewage treatment plant of 50	(10)	1	2					
	MLD.	• /							
