
Q. Code:376566

Reg. No. Image: Control of the second state B. E / B. TECH.DEGREE EXAMINATIONS, MAY 2024 Sixth Semester CE18601 – DESIGN OF STEEL STRUCTURES (CIVIL ENGINEERING) (CIVIL ENGINEERING) (Regulation 2018/2018A) (Use of IS 800, IS 808, IS875 (Part 3) and Steel Tables may be permitted)						
TIME course outcome	STATEMENT	AAX. MA	ARKS	: 100 rbt level		
CO 1	Upon successful completion of the course, the student should be able to F connection for the problem statement using codal provisions.	Provide th	ne apt	3		
CO 2	Design of tension members using codal provisions.			3		
CO 3	Design columns and columns bases.			3		
CO 4	Design bending member with appropriate section using design principles.			3		
CO 5	Compute the wind loads and others loads on industrial structures baprovisions.	ased on	codal	3		
PART- A(10x2=20Marks) (Answer all Questions) CO RBT LEVEL						
1. D:	istinguish between gauge distance and pitch of the bolt.		1	2		
2. He	ow to calculate the efficiency of a joint?		1	2		
3. Ca	alculate the net effective area for the bolted connection shown in the figure for	r section	2	3		

1-2-2-1. Use 4.6 grade of bolt 24 mm diameter

All dimensions are in mm

4.	What is shear lag? How can it be reduced?	2	2
5.	What is the purpose for providing anchor bolts in the base plate?	3	2
6.	Define Slenderness ratio.	3	1
7.	What do you mean by castellated beam?	4	1
8.	What are the different types of stiffeners provided in a plate girder?	4	2
9.	What are the key advantages of using PEBs over conventional buildings?	5	2
10.	Discuss the types of load combinations for the analysis of roof truss.	5	2

<u>PART- B (5x 14=70Marks)</u>

		Marks	CO	RBT LEVEL
11. (a)	Design a single bolted double cover butt joint to connect plates Fe410 grade	(14)	1	3
	having thickness 16 mm. Use M16 bolts of grade 4.6. Find the efficiency of			
	the joint.			

(OR)

(b) Design a lap joint between the two plates of width 150 mm, if the thickness (14) 1 3 of one plate is 12 mm and the other is 10 mm. The joint has to transfer a working load of 100 kN. The plates are of Fe 410 grade. Use bearing type bolts.

12. (a) Find the tension carrying capacity of single angle ISA 100 x 100 x 8 mm (14) 2 3 connected to gusset by means of three bolts of 22mm diameter at a pitch of 80 mm centre to centre in one line. Take fy = 250 N/mm² and fu = 410 N/mm².

O. Code:376566

(OR)

- (b) Design a tension member using two angle sections to carry 180kN when (14) 2 3
 both angles are connected on both sides of the gusset plate.
- 13. (a) Design a built up column with two channels placed back-to-back and (14) 3 3 separated apart. The column is of 6m effective length and supports a factored load of 1500kN. Also design the bolted lacing system.

(OR)

- (b) Design a gusseted base for a column ISHB 350 @710N/m with two plates (14) 3 3
 450mm x 20mm carrying a factored load of 3600 kN. The column is to be supported on a concrete pedestal to be built with M25 concrete.
- 14. (a) Design a simply supported beam of effective span 1.5m carrying a factored (14) 4 3 concentrated load of 360 kN at mid span.

(OR)

- (b) An ISMB 500 section is used as a beam over a span of 6 m, with simply (14) 4 3 supported ends. Determine the maximum factored uniformly distributed load that the beam can carry if the ends are restrained against torsion but compression flange is laterally unsupported.
- 1 5. (a) Design a truss of span 15m spacing 4m to be built near Visakhapatnam with (14) 5 3 the following details:

Class of building=General with life of 50 years

Terrain = Category 2 Max.dimension:40m

Width of building: 15m

Height at eve level: 8m

Topography: \Box less than 3°

(OR)

(b) Design an angle purlin for a trussed roof from the following data.
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3
(14) 5 3

PART- C (1x 10=10Marks) (O.No.16 is compulsory)

	(Q.No.16 is compulsory)	Marks	CO	RBT LEVEL
16.	Design a lap joint between the two plates of width 150 mm, if the thickness	(10)	1	3
	of one plate is 12 mm and the other is 10 mm. The joint has to transfer a			
	working load of 100 kN. The plates are of Fe 410 grade. Use appropriate			
	connections.			
