		Q. Code: 765						6544	44		
	Reg. No.										
	RE / RTECH DECDEF EVA	MIN	лті	ON	S M	v v	024				
	Third Seme	ester		UN	5 , W1	11 4	024				
	CE18302 – MECHANI	CS ()F F	ĽU	IDS						
	(Civil Engined (Regulation 2018	ering) 701	8 A)								
TI	ME: 3 HOURS	/ 201	OAJ			I	MAX	. MAF	RKS:	100	
COUI OUTCO	RSE STATEM DMES	ENT								RBT LEVEL	
CO 1	Summarize the differences between the solid	l and	fluid	and	d appl	y the	fluid	prope	rties	3	
CO 2	and its behavior in static conditions to solve provide the conservation laws applicable to	robler fluid	ns.	1 its	annl	icatio	n thr	ough	fluid	3	
	kinematics and dynamics.	mana	, unc	4 100	, uppi	leatio	ii uiiv	ougn	liuid	U	
CO 3	Analyze the model for flow studies and to pre-	dict th	e per	for	nance	of pr	ototyp	pe.		3	
CO 4 CO 5	Analyze the losses in pipe lines for both lamin Apply the boundary layer concepts to find the	ar and e dra	d turb g for	oulei	nt con	dition d by	s. fluid	on the	flat	3	
005	solid surface.	le uru	5 101		Actore	u oy	IIulu	on me	mat	U	
	PART- A (10 x 2 =	= 20 N	lark	s)							
	(Answer all Qu	estion	is)						CO	RBT	
1	State Newton's law of viscosity								1	LEVEL 7	
1.	State Newton's law of viscosity.								1	2	
2.	Distinguish between a real fluid and an ideal fluid.								1	2	
3.	What is meant by velocity potential function?								2	2	
4.	Differentiate compressible and incompressible flow.								2	2	
5	Distinguish hotwoon Coomotric similarity and King	matia	, in il	onite					2	2	
3.	Distinguish between Geometric similarity and Kiner	natic	511111	anty	/.				3	2	
6.	How the fundamental quantities are involved in the	dimer	sion	al ar	nalvsis	?			3	2	
						-			•	-	
7.	Discuss the factors to be determined when viscous f	luid fl	ows 1	thro	ugh th	e circ	ular p	oipe.	4	2	
					·		1				
8.	Compare hydraulic gradient line with total energy li	ne.							4	2	
0	List out the methods of preventing the concretion of	o Dor	ndar	w 1e	uor				5	ſ	
7.	List out the methods of preventing the separation of	a DUl	muar	y ia	yer.				3	2	

Q. Code: 765444 5 2

10. Recommend the boundary conditions for the velocity profiles.

PART- B (5 x 14 = 70 Marks)

		Marks	CO	RBT LEVEL
11. (a)	A liquid has a specific gravity of 0.72. Find its density, specific weight and also the weight per litre of the liquid. If the above liquid is used for lubrication between a shaft and a sleeve, find the power lost in liquid for a sleeve length of 100 mm. The diameter of the shaft is 0.5 m and the thickness of the liquid film is 1 mm. Take the viscosity of fluid as 0.5 Ns/m ² and the speed of the shaft as 200 rpm.	(14)	1	3
(b)	(UR)	(14)	1	2
(0)	placed vertically in water in such a way that the centre of the plate is 3 m below the free surface of water. Also find the position of centre of pressure.	(14)	1	5
12. (a)	A venturimeter of inlet diameter 300 mm and throat diameter 150 mm is inserted in vertical pipe carrying water flowing in the upward direction. A differential mercury manometer connected to the inlet and throat gives a reading of 200 mm. Find the discharge if the coefficient of discharge of meter is 0.98.	(14)	2	3
	(OR)			
(b)	Derive the continuity equation for a three-dimensional incompressible flow.	(14)	2	3
13. (a)	The resisting force (R) of a supersonic flight can be considered as dependent upon length of aircraft (l), velocity (V), air viscosity ", μ ", air density ", ρ ", and bulk modulus of air ",k". State the functional relationship between these variables and the resisting force.	(14)	3	3
(b)	The efficiency of the fan depends on the density (ρ) dynamic viscosity (μ) angular viscosity (ω), diameter (D), Discharge (Q). Express efficiency in terms of dimensionless parameters using Rayleigh's method	(14)	3	3
14. (a)	Examine the head lost due to friction in a pipe of diameter 300 mm and length 50 m, through which water is flowing at a velocity of 3 m/s using (i) Darcy formula, (ii) Chezy's formula for which $C = 60$.	(14)	4	3
(b)	An oil of viscosity 0.1Ns/m^2 and relative density 0.9 is flowing through a circular pipe of diameter 5cm and of length 300m. The rate of flow of fluid through the pipe is 3.5 liters/sec. Examine the pressure drop in a length of 300 m and also the shear stress at the pipe wall.	(14)	4	3
15. (a)	For the following velocity profiles, examine whether the flow has or on the verge of separation or will attach with the surface:	(14)	5	3

Q. Code: 765444

i) $u/U = 3/2 (y/\delta) - 1/2 (y/\delta)^3$, ii) $u/U = 2 (y/\delta)^2 - (y/\delta)^3$ iii) $u/U = -2 (y/\delta) + (y/\delta)^2$

16.

(OR)

(b) Define the terms displacement thickness and momentum thickness and also (14) 5 3 derive an expression for the displacement thickness and momentum thickness in boundary layer with necessary assumptions.

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)			
	Marks	CO	RBT LEVEL
Design the loss of head if the pipes are connected in series (compound	(10)	4	3
pipes) and in parallel.			
