Reg. No.							

M.E / M.TECH. DEGREE EXAMINATIONS, MAY 2024

Second Semester

BY22201 – ANALYTICAL TECHNIQUES IN BIOTECHNOLOGY

(Biotechnology)

(Regulation 2022)

		(iteguiation 2022)					
TIME: 2 HOURS		HOURS MAX. MA	MAX. MARKS: 60				
COURSE OUTCOMES		STATEMENT					
CO	1	Create awareness about the hazardous chemicals and safety precautions in case emergency.	se of	2			
CO	2	Learn about the qualitative and quantitative estimation of biomolecules.		4			
CO	3	Elaborate on the working principle of instruments (pH meter and spectroscopy) us	ed in	4			
60		biochemistry lab.					
•		Analyze the significance of biochemistry in research and clinical sample analysis. Demonstrate the application of spectroscopic methods in the quantification	n of	4 5			
CO	3	bioproduct.	11 01	3			
		PART- A ($10 \times 2 = 20 \text{ Marks}$)					
		(Answer all Questions)					
			CO	RBT LEVEL			
1.	Define	e mass-to-charge ratio.	1	2			
2.	State t	he differences between AES from AAS.	1	2			
	State t	ne differences econocin i les nom i i les.	•	_			
3.	Driefly	y explain the principle of Gas Chromatography.	2	2			
٥.	Brieny	explain the principle of Gas Chromatography.	<i>L</i>	L			
4	ъ.		•	•			
4.	Descri	be one application of 2D electrophoresis in proteomics research.	2	3			
5.	Descri	be the principle of fluorescence microscopy.	3	3			
6.	Differ	entiate SEM and TEM in terms of their imaging mechanisms.	3	4			
7.	How d	loes ELISA RIA differ from conventional RIA techniques?	4	4			
8.	Name	two safety precautions that should be taken when working with radioactive	4	2			
0.			ſ	=			
	isotop		_	٠			
9.	Analy	ze the purpose of transferring biomolecules onto solid support in blotting	5	4			

	taahn	iana		Q. Cod	le:51	0386
	Name		ee types of biosensors based on the type of bioreceptor used.		5	2
			PART- B (3 x $10 = 30 \text{ Marks}$)	Marks	СО	RBT LEVEL
11. (ain the various components and their functions in UV-Vistroscopy.	(10)	1	2
		эрсс	(OR)			
(1			cribe the principle of NMR spectroscopy and how it is used to rmine the chemical environment of nuclei in a molecule.	(10)	1	2
12. (-		uss the instrumentation used in electrophoresis, including the ponents of a typical electrophoresis system and their functions.	(10)	2	3
(•		(OR) cribe the principles of HPLC and the factors that affect the separation of ponents in a chromatographic system.	(10)	2	3
13. (a)	a)	(i)	Differentiate the working principle of confocal microscopy from conventional light microscopy.	(5)	3	4
	((ii)	Describe the principles of radioreceptor assay (RRA) and how it is used to study ligand-receptor interactions.	(5)	4	4
			(OR)			
(b)	b)	(i)	Describe the process of sample coating in specimen preparation for SEM.	(5)	3	4
	((ii)	How are tracer techniques using radioactive isotopes used in biological and environmental studies?	(5)	4	4
			PART- C (1 x 10 = 10 Marks) (Q.No.14 is compulsory)			
			• • • • • • • • • • • • • • • • • • • •	Marks	CO	RBT LEVEL

Discuss the differences between conventional PCR, quantitative PCR, and (10)

5

14.

reverse transcription PCR, and provide examples of their applications.
