Q. Code:187829

Reg. No.							

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Third Semester BT18305 – MICROBIOLOGY

(Biotechnology)

(Regulation 2018/2018A)

TIME: 3	B HOURS MAX. MARKS: 10	X. MARKS: 100		
COURSE OUTCOMES	STATEMENT	RBT LEVEL		
CO 1	Compare the various microscopy and its applications in the field of microbiology	3		
CO 2	Demonstration of microbes characterization along with microbial structural classification of bacteria, fungi, cyanobacteria, virus and actinomycetes, culturing, reproduction and significance	3		
CO 3	Identify the various physical and chemical growth requirements of bacteria growth.	3		
CO 4	Solve the problems in microbial infection and their control	3		
CO 5	Examine the application of microbiology in fermentation industry, agricultural and environmental fields	4		

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

			CO	RBT LEVEL
1.	How can we differentiate between living and dead microbes during micr examination?	oscopic	1	2
2.	Why is flagellar staining a more challenging procedure compared to Gram staining what information does it provide about microbial motility?	ng, and	1	2
3.	How does the structural organization of bacteria differ from that of fungi?		2	2
4.	Compare and contrast yeast asexual and sexual reproduction processes.			
5.	What factors can cause a culture to enter the stationary phase prematurely?			
6.	How would you design a medium to differentiate between two closely related b species?	acterial	3	2
7.	Differentiate the effectiveness between physical methods and chemical methods Sterilization.	nods of	4	2
8.	Why is the emergence of antibiotic resistance a major public health concern?		4	2
9.	Give an example of how bioremediation can be used to clean up a specific pollutant.	type of	5	2
10.	Mention any two methods of food preservation with mode of action.		5	2
	PART- B (5 x 14 = 70 Marks)	Marks	CO	RBT LEVEL
11. (a	(i) Compare and contrast the principles behind differential staining and	(7)	1	3

11. (a) (i) Compare and contrast the principles behind differential staining and (7) 1 3 specific staining techniques.
(ii) How do these techniques provide information about the morphology (7) 1 3 and physiology of microorganisms?

(OR)

	(OR)			
(b)	Discuss the limitations of resolution, magnification, and depth of field in light microscopy and how electron microscopy overcomes these limitations.	(14)	1	3
12. (a)	Discuss the structural features of viruses and how they rely on host cells to multiply.	(14)	2	3
	(OR)			
(b)	(i) Compare and contrast the structural organization and reproduction of different algal groups.	(7)	2	3
	(ii) Analyze the challenges faced by mycoplasma structure and how they have adapted to survive and replicate within a host.	(7)	2	3
13. (a)	(i) Explain the rationale behind using selective and differential media for bacterial isolation and identification.	(7)	3	3
	(ii) Compare and contrast aerobic respiration and anaerobic respiration in terms of electron transport chain involvement, substrate utilization, and ATP yield.	(7)	3	3
	-			
	(OR)	(1 A)	•	•
(b)	Discuss the advantages and limitations of optical density, colony forming units, and direct microscopic counting for quantifying bacterial growth.	(14)	3	3
14. (a)	Choose any two different classes of antibiotics and discuss their specific modes of action.	(14)	4	3
	(OR)			
(b)	Summarize culture-based methods and newer molecular methods used for microbial identification. Discuss the advantages and limitations of each approach.	(14)	4	3
15. (a)	Evaluate the potential and limitations of using biofertilizers and biopesticides as sustainable alternatives to chemical fertilizers and pesticides.	(14)	5	3
	(OR)			
(b)	(i) Explain the mechanism of bioleaching by microorganisms and evaluate its effectiveness in recovering metals from low-grade ores.	(7)	5	3
	(ii) Compare and contrast the production processes for vitamin B12 and biogas. Discuss the specific challenges and considerations for each process.	(7)	5	3
	<u> PART- C (1 x 10 = 10 Marks)</u>			
	(Q.No.16 is compulsory)	Marks	CO	RBT LEVEL
16.	Many bacterial species exhibit unique metabolic capabilities. Discuss one example of a specific bacterial metabolic pathway that has industrial or	(10)	3	3

example of a specific bacterial metabolic pathway that has industrial or environmental applications. How does this pathway highlight the diverse and adaptable nature of bacterial metabolism?
