Q. Code:464106

00

ппт

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Sixth Semester

AE18604 – VEHICLE DESIGN DATA CHARACTERICTICS

(Automobile Engineering)

(Regulation 2018/2018A)

TIME: 3	HOURS MAX. MARKS:	100
COURSE OUTCOMES	STATEMENT	RBT LEVEI
CO 1	Examine the assumptions in basic design of vehicle and discuss the effect of design and operating variables on performance and emission.	3
CO 2	Examine and compare the various resistances acting on the vehicle.	3
CO 3	Investigate the performance characteristics of internal combustion engines.	4
CO 4	Solve velocity and acceleration of piston against crank angle and examine the performance characteristic of forces and moments acting on the piston.	3
CO 5	Use the basic principles to design the gearbox of the vehicle.	4

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	LEVE
1.	How dry weight of a vehicle is determined and why is it crucial for shipping and	1	3
	transporting via large trucks?	1	0
2.	Identify any two design considerations of a vehicle.	1	2
3.	How the weight of the vehicle influences the gradient resistance?	2	2
4.	With the help of suitable illustration, how will you determine the vehicle speed at	2	2
	maximum acceleration for a small passenger car?	Z	Z
5.	Compare the under square and over square engine.	3	3
6.	Interpret how the variation in stroke length influences the power output.	3	2
7.	Illustrate the turning moment diagram for a typical single cylinder four stroke engine.	4	2
8.	Identify the significance of side thrust acting on the piston.	4	2
9.	In what way automatic transmission system is advantageous over a manual transmission	-	2
	system.	3	3
10.	Elucidate the importance of the over drive in a transmission system.	5	2

PART- B (5 x 14 = 70 Marks)

		Marks	CO	RBT
				LEVEL
11. (a)	Investigate the most influencing design and operating variables affecting	(14)	1	3

3

the performance of a compression ignition engine.

(OR)

- (b) (i) Discover and explain the method to measure the frictional power of a (7) 1 3 multi cylinder SI engine.
 - (ii) Determine the brake thermal efficiency, indicated thermal efficiency, (7) 1 mean effective pressure of cyliner and petrol consumption per bkWh of a four stroke four cylinder inline engine with the following specifications. Bore = 101 mm, Stroke = 114 mm, Speed = 1600 rpm , Fuel consumption = 0.204 kg/mm, Heating value of the fuel = 41800 kJ /kg, Difference in tension on either side of brake pulley = 378 N, Brake circumference = 3.35 m and mechanical efficiency = 83 %.
- 12. (a) A fully loaded truck weighs 100111 N and the engine develops 97 kW at (14) 2 3 2400 rpm. The transmission efficiency is 90% in top gear of 3.4:1 and 85% in third gear of 8.4:1. The performance of the vehicle is such that it will just reach a speed of 86.8 km/h at 2400 rpm at wide open throttle when running on the level in still air, and at the same engine speed in third gear it will just climb a gradient of 1 in 14. If the total resistance R in N is given by the formula.

 $R = KW + K_a AV^2 + W \sin \theta$

Where K is Coefficient of Rolling resistance, K_a is Coefficient of Air resistance, A is m² of frontal area and V the speed in km/h. calculate

- i) K, K_a and hence the engine power required for climbing a grade of 1 in 40 at 48 km/h in top gear.
- ii) How much more weight can be added to the vehicle to use the engine power fully under the above condition. Frontal area of truck is given as 5.575 m^2 .

(OR)

(b) With the specification of a model car, calculate the rolling resistance, air (14) 2 3 resistance, total resistance and tractive force at any velocity.

Q. Code:464106

13. (a) It is assumed that an automobile engine can operate at a thermal efficiency (14) 3 4 of 22 % when operating conditions are as follows:

Volumetric efficiency is 80%, Mechanical efficiency is 82 %, Heating value of petrol is 46400 kJ/kg, Theoretical air required per kg of petrol 14.5, Excess air supplied is 25 %, Petrol vapour has density twice the density of air, the mixture at the end of suction stroke is at a pressure of 8.24 x 10⁴ N/m² and a temperature of 333 K, Gas constant for air is 287.14 kJ/kgK. Find the cylinder dimensions of a six cylinder engine for the above conditions when the engine develops its rated power of 66 kW at 4200 rpm. Assume that the stroke is 25 % greater than the diameter.

(**OR**)

- (b) With the help the pressure-volume diagram, determine the mean effective (14) 3 4 pressure of a four stroke petrol engine with a compression ratio 8:1 and the suction pressure 0.97 MPa.
- 14. (a) With the suitable illustration identify the various forces acting on the piston (14) 4 3 and connecting rod and derive the expressions for the same.

(**OR**)

(b) The following details are given for the piston, during expansion stroke. (14) 4 3

Crank angle	0°	15°	30°	45°	60°	75°	90°	105°	120°	135°	150°	165°	180°
Gas pressure (kg/cm ²)	50.5	52.5	32.5	24.9	14.5	11.2	9.4	7.5	5.8	4.5	4	3.5	2.25

Find the gas force, inertia force and resultant force. Assume Bore area as 49cm² stroke length as 7.9 cm.

15. (a) Sketch a section through a sliding type gearbox with four forward and one (14) 5 4 reverse speeds and explain clearly how the different speed ratios will be obtained in the following cases:

Gear ratio on top gear	= 1:1
Gear ratio on third gear	= 1:38:1
Gear ratio on second gear	= 2.24:1
Gear ratio on first gear	= 3.8:1
Gear ratio on reverse gear	= 3.8:1

Assume counter shaft or layout shaft speed is half that of the engine speed and the smallest gear is not to have less than 15 teeth.

(**OR**)

Page PAGE 1 of NUMPAGES 4

Q. Code:464106

4

- (b) How is the vehicle speed related to engine rotation? For typical motor car, (14) 5 the road resistance is given by 23 N per 1000 N, the air resistance by the expression 0.0827 V², transmission efficiency 88 % in top speed; car weight 20 kN when fully loaded. Calculate
 - i) The brake power required for a top speed of 144 km/h (The acceleration in m/s² at 48 km/h, assuming. the torque at 48 km/h, in the top gear 25% more than at 144 km/h.
 - ii) The brake power required to drive the car up a gradient of 1 in 5 at 48 km/h, transmission Efficiency 80% in bottom gear. The resistance being in N and V the speed in km/h and g = acceleration due to gravity = 9.81 m/s².

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

		Marks	CO	RBT
				LEVEL
16.	How does the inclusion of a gearbox enhance automotive functionality?	(10)	5	4
	Summarize the methodology employed to derive gear ratios, particularly in			
	the context of optimizing performance for compact vehicles.			
