Q. Code:946399

Reg. No.

TIME: 3 HOURS

B.E / B.TECH. DEGREE EXAMINATIONS, MAY 2024

Third Semester

AE18303 – FLUID MECHANICS AND HYDRAULIC MACHINES

(Automobile Engineering)

(Regulation 2018/2018A)

MAX. MARKS: 100

DDT

Manha

CO

COURSE STATEMENT RBT OUTCOMES LEVEL Describe the fluids in static, kinematic and dynamic equilibrium. **CO**1 3 **CO 2** Analyze the applicability of physical laws in addressing problems of hydraulics. 3 **CO 3** Apply dimensional analysis and modeling to describe fluid properties and 3 dimensionless quantities. **CO 4** Critically analyze the performance of rotodynamic pumps and reciprocating pumps used 3 in automotive application. Explain the working principles of turbines and select the type of turbine for particular **CO 5** 3 application.

PART-A(10x2=20Marks)

(Answer all Questions)

		CO	RBT LEVEL
1.	The surface tension of water in contact with air at 20°C is 0.0725 N/m. The pressure inside a droplet of water is to be 0.02 N/cm^2 greater than the outside pressure. Calculate the diameter of the droplet of water.	1	3
2.	Write an equation of the theoretical discharge for the Venturi meter.	1	2
3.	Write an equation of Darcy Weisbach's equation for the pipes.	2	2
4.	Sketch the velocity distribution and shear stress distribution across a section of the pipe.	2	2
5.	Check whether the following equation is dimensionally homogeneous. $Q = Cd \cdot a \sqrt{2gh}$	3	3
6.	Differentiate Reynold's number with Mach's number.	3	3
7. 1.	Elucidate four main differences between centrifugal pump and reciprocating pump?	4	3
8. 2.	Write an expression for the head lost due to friction in suction and delivery pipes.	4	2
9. 3.	Distinguish between an Francis turbine and Kaplan turbine.	5	3
10. 4.	Why is draft tube used in reaction turbine?	5	2

PART-B (5x 14=70Marks)

		WIAI KS	co	LEVEL
11. (a)	Two large plane surfaces are 2.4 cm apart. The space between the surfaces	(14)	1	3
	is filled with glycerine. What force is required to drag a very thin plate of			

PAGE * MERGEFORMAT 1

surface area 0.5 m^2 between the two large plane surfaces at a speed of 0.6 m/s. Find

(i) the thin plate is in the middle of the two plane surfaces, and (ii) the thin plate is at a distance of 0.8 cm from one of the plane surfaces? Take the dynamic viscosity of glycerine is $8.10 \times 10^{-1} \text{Ns/m}^2$.

(OR)

- (b) Water flows through a pipe AB 1.3 m diameter at 4 m/s and then passes (14) 1 3 through a pipe BC 1.5 m diameter. At C, the pipe branches. Branch CD is 0.9 m in diameter and carries one-third of the flow in AB. The flow velocity in branch CE is 2.5 m/s. Find the volume rate of flow in AB, the velocity in BC, the velocity in CD and the diameter of CE.
- 12. (a) A plate of 650mm length and 450mm wide is immersed in a fluid of (14) 2 3 specific gravity 0.9 and kinematic viscosity is 10⁻⁴m²/s. The is moving with a velocity of 6 m/s. Determine the
 - 1. Boundary layer thickness
 - 2. Shear stress at the end of the plate
 - 3. Drag force on one side of the plate.

(**OR**)

(b) A pipe of diameter 20 cm and length 2000 m connects two reservoirs, (14) 2 3 having difference of water Levels as 20 m as shown in Figure 1. Determine the discharge through the pipe. If an additional pipe of diameter 20 cm and length 1200 m is attached to the 1200 m length of the existing Pipe, find the increase in the discharge. Take f = 0.015 and neglect the minor loss.

Figure 1

13. (a) Using Buckingham's π – theorem, shown that the discharge Q consumed (14) 3 3 by an oil ring is given by

$$Q = Nd^{3}\phi \left[\frac{\mu}{\rho Nd^{2}}, \frac{\sigma}{\rho N^{2}d^{3}}, \frac{w}{\rho N^{2}d}\right]$$

Where d is the internal diameter of the ring, N is rotational speed, ρ is density, μ is viscosity, σ is surface tension and w is the specific weight of oil.

(OR)

- (b) The characteristics of the spillway are to be studied by means of a (14) 3 3 geometrically similar model constructed to the scale ratio of 1:12.
 - a) If the maximum rate of flow in the prototype is 30 m³/s, what will be the corresponding flow in model?
 - b) If the measured velocity in the model at a point on the spillway is 3.5 m/s, what will be the corresponding velocity in prototype?
 - c) If the hydraulic jump at the foot of the model is 80 mm high, what will be the height of jump in prototype?
- 14. (a) A centrifugal pump is running at 1000 rpm the output vane angle of the (14) 4 3 impeller is 45° and velocity of flow at outlet is 2.5 m/s. The discharge through the pump is 200 litres/sec when the pump is working against total head of 20 m. If the manometric efficiency is 80%. Find outer diameter of impeller the width of impeller at outlet.

(**OR**)

- (b) The cylinder bore diameter of a single acting reciprocating pump is 150 (14) 4 3 mm and its stroke is 300 mm. The pumps runs at 50 rpm and lifts water through a height of 25 m. The delivery pipe is 22 m long and 100 mm in diameter. Find the theoretical discharge and the theoretical power required to run the pump. If the actual discharge is 4.2 litres/sec. Find the percentage of slip. Also determine the acceleration head at the beginning and middle of the delivery stroke.
- 15. (a) A Pelton wheel has a mean bucket speed of 10 m/s with a jet of water (14) 5 3 flowing at the rate of 700 litres/sec, under a head of 30 m.The buckets deflects the jet through a angle of 160°. Calculate the power by water to the runner and the hydraulic efficiency of turbine. Assume co-efficient of velocity is 0.98.

(**OR**)

Q. Code:946399

(b) A Kaplan turbine is to be designed to develop 9500 kW. The net available (14) 5 3 head is 6 m. If the speed ratio is 2.5 and the flow ratio is 0.7, overall efficiency is 90% and the diameter of the boss is one third of the diameter of the runner. Find the diameter of the runner, its speed and specific speed of the turbine.

PART- C (1x 10=10Marks)

(Q.No.10 is compulsory)	Marks	CO	RBT
Explain the working principle of a reciprocating pump and discuss its	(10) 4	2 2	
advantages and limitations compared to other types of pumps.			

16.