										Q. Code:982123					
Reg. No.															

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024

Third Semester

AE18012 – ENGINE AND VEHICLE MANAGEMENT SYSTEMS

(Automobile Engineering)

(Regulation 2018/2018A)

	(Regulation 2016/2016A)		
	TIME: 3 HOURS MAX. M		
COU OUTC			RBT LEVEL
CO 1	Discuss the fundamentals of control strategies applied in engines and auto components.	motive	3
CO 2	•		3
CO 3		S.	3
CO 4			3
CO 5	Explore the control system employed in comfort, security and safety of vehicle.		3
	PART- A $(10 \times 2 = 20 \text{ Marks})$		
	(Answer all Questions)		
	(Allswer all Questions)	CO	RBT LEVEL
1.	How does a microcontroller differ from a microprocessor?	1	2
2.	Define open and closed loop control strategies.	1	2
3.	What is lambda sensor? Write use of it in vehicles.	2	1
4.	What are all the engine parameters that can be measured for engine management	2	1
	system using thermistor?		
5.	List the SI engine fuel system components.	3	1
J.	List the 31 engine ruer system components.	3	1
(List the advantages of Electronic ignition systems	2	1
6.	List the advantages of Electronic ignition systems.	3	1
7.	What is meant by Pilot injection?	4	1
7•	what is meant by Fhot injection?	4	1
0		4	•
8.	Sketch the typical fuel supply schematic for electronic diesel control systems.	4	2
9.	What is airbag system?	5	1

5 2

PART- B (5 x $14 = 70 \text{ Marks}$)				DDT				
			C O	RBT LEVEL				
11.(a)	Identify the most successful microprocessor architecture and discuss its	(14)	1	3				
	working with a neat block diagram.							
(OR)								
(b)	Discuss a typical look up table used with PID control for engine management	(14)	1	3				
	systems.							
12.(a)	Describe the construction and working of a sensor based on piezo electric	(14)	2	3				
	effect and its application in a car.							
(OR)								
(b)	Discuss the following sensor and its applications with neat sketch.	(14)	2	3				
	(i) Throttle position sensor							
	(ii) Knock sensor							
	(iii) MAP sensor							
13.(a)	Illustrate the construction and operation of the three-way catalytic converter.	(14)	3	3				
	Also write how its operating efficiency is monitored and controlled?							
(OR)								
(b)	Identify the most suitable Bosch SI engine fuel injection system and Explain it.	(14)	3	3				
14.(a)	Discuss in detail the various components of an electronically controlled	(14)	4	3				
	common rail fuel injection system with a neat sketch.							

(OR)

- (b) Justify the requirement of EGR in the CI engine Management system and how (14) 4 it controls the Emission from the CI Engine?
- 15.(a) Identify and explain the suitable braking system which uses electronics to (14) 5 detect and prevent wheel lock up.

(OR)

- (b) Discuss the principle and operation of the following systems (14) 5 3
 - i) Cruise control systems.

ii) Collision avoidance systems using RADAR systems

<u>PART- C (1 x 10 = 10 Marks)</u>

(Q.No.16 is compulsory)

Marks CO RBT LEVEL and discuss the important engine parameters to be controlled in SI (10) 1 2

16. Identify and discuss the important engine parameters to be controlled in SI (10) 1 2 engines.
