Q. Code:547672

Reg. No.

TIME: 3 HOURS

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024

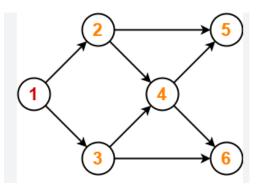
Second Semester

AD22201 – DATA STRUCTURES AND ALGORITHM ANALYSIS

(Artificial Intelligence and Data Science)

(Regulation 2022)

MAX. MARKS: 100


COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Design and analyse time and space complexities of algorithms using	2
	different design techniques for various computing problems	
CO 2	Solve problems using suitable linear data structures	3
CO 3	Solve problems using suitable nonlinear tree data structures	3
CO 4	Demonstrate the use of graph algorithms for solving problems	3
CO 5	Design algorithms using advanced algorithm design techniques	3

PART-	A (20	x 2 = 40	Marks)
-------	-------	----------	--------

(Answer all Questions)

	(Answer an Questions)	60	DDT
		CO	RBT LEVEL
1.	Describe about the best case, average case and worst case.	1	2
2.	What is called brute force approach?	1	2
3.	Define divide and conquer strategy.	1	2
4.	What is called recurrences?	1	2
5.	Draw a sample circular queue.	2	2
6.	Check the balancing symbol using stack for the following expression.	2	3
	(P+Q)*(R-S)		
7.	Define open addressing in hashing.	2	2
8.	Justify doubly linked list more useful than a singly linked list and give its notation?	2	3
9.	How many nodes will a complete binary tree with 27 nodes have in the last level? What	3	3
	will be the height of the tree?		
10.	Define B-Trees.	3	2
11.	What is splay tree?	3	2
12.	List down the advantages of priority queues.	3	2
13.	Give the topological sorting for the given graph.	4	3

Q. Code:547672

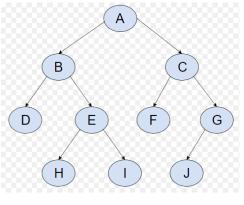
 14. Draw the minimum spanning tree for the following graph.
 4
 3

15.	Differentiate BFS & DFS.	4	2
16.	Write the applications of graphs.	4	2
17.	State n-queens problem.	5	2
18.	Define optimal binary search tree.	5	2
19.	Define knapsack problem.	5	2
20.	Differentiate NP-Complete and NP-Hard problems.	5	2

PART- B (5 x 10 = 50 Marks)

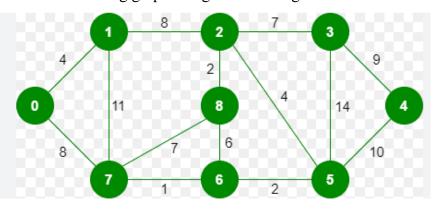
		Marks	CO	RBT LEVEL
21. (a)	Apply the quick sort on the below listed elements and provide the pseudo	(10)	1	2
	code neatly. In which way, you are going to pick the pivot element. Justify it.			
	List = 10, 80, 30, 225, 90, 40, 50, 70, 121			
	(OR)			
(b)	Explain the growth of functions in algorithm. Write about the asymptotic	(10)	1	2
	notations in detail.			
22. (a)	Create a singly linked list with the Key elements 11, 22, 34, 44, 55, 66.	(10)	2	3
	Perform the following ADT operations and with the pseudo code			
	(i)Insert a new node with element '25' at position 3.			
	(ii)Delete Last node of the list.			

(iii)Search 34


(OR)

Page 2 of 4

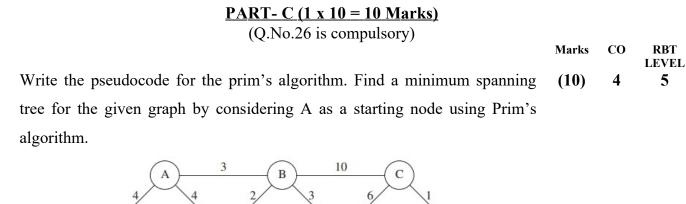
- (b) Convert the expression given below into its corresponding postfix expression $\begin{pmatrix} Q. \ Code: 547672 \\ (10) 2 3 \\ 15 + ((8-4)+10)/2. \end{pmatrix}$
- 23. (a) Consider the empty binary search tree. Now do the following operations: (10) 3 3 Insert 11, 22, 33, 44, 55, 66, and 77 in the tree.
 Find the result of in-order, pre-order, and post-order traversals. Show the deletion of the root node and 55.Write the pseudo code for the above operations.

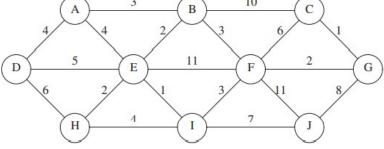

(OR)

- (b) Create an AVL tree using the following sequence of data: 16, 27, 9, 11, 36, (10) 3 3
 54, 81, 63, 72. Write the rules and pseudo code for Single LL, RR rotations.
- 24. (a) Explain in detail about Breadth First Search and Depth First Search. Write (10) 4 3 the BFS & DFS traversal for the following graph.

(OR)

(b) (i) Explain in detail about kruskal's algorithm with a proper pseudocode. (10) 4 3
 Solve the following graph using kruskal's algorithm.


problem.


26.

	Job 1	Job 2	Jop 3	Job 4
Α	9	2	7	8
В	6	4	3	7
с	5	8	1	8
D	7	6	9	4

(OR)

(b)₁. Write an algorithm for Huffman code. Find an optimal Huffman Code for the (10) 5 3 following set of frequencies: a: 50 b: 25 c: 15 d: 40 e: 75
