Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Fifth-Semester

AD18502 – DIGITAL SIGNAL PROCESSING FOR DATA SCIENCE

(Artificial Intelligence and Data Science)

(Regulation 2018 / 2018A)

(Normal Distribution Table permitted)

TIME: 3	B HOURS MAX. MARE	KS: 100
COURSE	STATEMENT	RBT
OUTCOMES		LEVEL
CO 1	Use of signal modelling.	4
CO 2	Know various signal transformations.	4
CO 3	Appreciate necessity of various probability distributions.	3
CO 4	Design models that can process audio signals.	4
CO 5	Use existing architectures and create their own architectures for computer vision.	3

PART- A (10 x 2 = 20 Marks)

	(Answer all Questions)	CO	RBT LEVEL
1.	Determine whether the given discrete time sequence is periodic or not. If the sequence	1	2
	is periodic, find the fundamental period, $x(n) = \cos\left(\frac{n}{8}\right) \cos\left(\frac{\pi n}{8}\right)$.		

2. Given the signal x(t) as shown in Fig.1.1. Sketch the following signals: x(t) = x(2t+3) 1 2

3.	Give the relationship between z-transform and Discrete Time Fourier Transform.	2	2
4.	Find the Inverse Z-transform of X(Z) ^{i} $\frac{Z}{(Z+2)(Z+3)}$ using power residue method.	2	1
5.	Define the term Binomial and Multinomial Distribution.	3	1
6.	Estimate the mean equation of Maximum Likelihood for the gaussian distribution.	3	2
7.	Define the term Autocorrelation of basic audio signal.	4	2
8.	Why are Gaussian mixture models replaced by deep neural network in the speech	4	2
	recognition process?		
9.	Infer the features of Convolution Neural Networks (CNN).	5	2
10.	Name the techniques involved in object detection and tracking.	5	2

Q. Code: 623744

		PART- B (5 x 14 = 70 Marks)	Mada	CO	DDT
			Marks	CO	LEVEL
11. (a)	(i)	Determine whether the given signal is Energy, Power or neither	(7)	1	4
		$\mathbf{x}(\mathbf{t}) = e^{-3t} \cdot u(t)$			
	(ii)	Find the Fourier transform of the signal,	(7)	1	4
		$\mathbf{x}(\mathbf{n}) = \mathbf{i} \mathbf{a} \vee \mathbf{i}^n; -1 < \mathbf{a} < 1 \mathbf{i}$			
		(OR)			
(b)	(i)	Determine whether the following systems are: (1) Memory or	(7)	1	4
		Memoryless, (2) Time-Invariant, (3) Linear or Non-Linear, (4) Causal			
		or Non-Causal, (5) Stable or Unstable system			
		(i) $y(t)=x(t)\cos\omega_c t$			
		(ii) $y(n)=x(n)+x(n-1)$			
	(ii)	Explain in detail about the process of converting an analog signal to	(7)	1	4
		digital signals. Mention some types of converters that are available to			
		make this conversion process.			
12. (a)	(i)	Find the Z transform of the signal $x(n) = [3(3)^n u(n)-4(2)^n u(n)]$	(7)	2	4
	(ii)	Find the Z transform of the signal and associated ROC:	(7)	2	4
		$\mathbf{x}(\mathbf{n}) = \mathbf{\dot{\iota}} \mathbf{\dot{\iota}})]\mathbf{u}(\mathbf{n})$			
		(OR)			
(b)	(i)	The Impulse response of an LTI system is $h(n) = \{1,2,2,1\}$. Find the	(7)	2	4
		response of the system for the input $x(n) = \{1,2,3,4\}$			
	(ii)	Determine the impulse response h(n) for the system described by the	(7)	2	4
		difference equation, $y(n)-4y(n-1)+4y(n-2) = x(n-1)$			
13. (a)	(i)	With appropriate equations, explain in detail about conditional	(8)	3	3
		Gaussian distribution and marginal distribution.			
	(ii)	The life time of an electric component is normally distributed with	(6)	3	3
		mean value of 250 hours and standard deviation of $\boldsymbol{\sigma}$ hours. Find the			
		value of $\boldsymbol{\sigma}$ so that the probability of the component to have life			
		between 200 and 300 hours is 0.7			
		(OR)			

(b) What do you mean by K-means Clustering? Elaborate the application with (14) 3 3

respect to image segmentation and image compression. 14. (a) Explain in detail about the basic audio features: (14) 4 4 (i) Pitch (ii) Timbral Features (iii) Inharmonicity (iv) MPEG-7 features (**OR**) **(b)** How audio signals are classified? Explain in detail about (i) K-Nearest (14) 4 4 Neighbour (K-NN), (ii) Bayes Classifier. 15. (a) Intricate on the following terms (14) 5 3 (a) Sparse interactions (b) Parameter sharing (c) Equivariant representation (**OR**) **(b)** Elaborate in detail about the process involved in Image segmentation and 3 (14) 5 synthesis.

<u>PART- C (1 x 10 = 10 Marks)</u>

	(Q.No.16 is compulsory)			
		Marks	CO	RBT
				LEVEL
16.	(i) Suppose scores on an IQ test are normally distributed. If the test has a	(10)	3	5
	mean of 100 and a standard deviation of 10, what is the probability that			
	a person who takes the test will score between 90 and 110?			
	(ii) Molly earned a score of 940 on a national achievement test. The mean			
	test score was 850 with a standard deviation of 100. What proportion of			
	students had a higher score than Molly? (Assume that test scores are			
	normally distributed).			

Q. Code: 623744