Q. Code:192589

DDT

~ ~

Marks CO

RBT

Reg. No.

B.E. / B.TECH. DEGREE EXAMINATIONS, MAY 2024 Fifth Semester

AD18501 – DEEP LEARNING ALGORITHMS AND ARCHITECTURES

(Artificial Intelligence and Data Science)

(Regulation 2018/2018A)

TIME: 3	3 HOURS MAX. MARKS	: 100
COURSE OUTCOMES	STATEMENT	RBT LEVEL
CO 1	Train models for multi-category classification.	3
CO 2	Train deep learning models and ensure the gradients are well controlled	3
CO 3	Construct a complex CNN and tune various hyper parameters	4
CO 4	Construct a sequential model which can capture the dependencies for time series data	4
CO 5	Familiar with the encoder-decoder architecture	3

PART- A (10 x 2 = 20 Marks)

(Answer all Questions)

		CO	KB1 LEVEL
1.	Define cross-entropy loss for softmax regression model.	1	2
2.	Compare linear regression and logistic regression.	1	2
3.	Elucidate the relation between bias and variance.	2	3
4.	State the working principle of perceptron.	2	2
5.	Enlist the properties of convolution operations.	3	3
6.	Show how a CNN can have numerous input and output channels.	3	3
7.	Sketch a Recurrent neural network with a hidden layer.	4	3
8.	Specify the Markov condition for the sequence model.	4	3
9.	Summarize the encoder – decoder architecture.	5	3
10.	Outline the basic components of an attention mechanism in neural networks.	5	2

PART- B (5 x 14 = 70 Marks)

					LEVEL
11. (a)	(i)	Model a simple linear regression to calculate best-fit line and loss	(7)	1	3
		functions.			
	(ii)	Derive the formula for estimators $\beta_0 \wedge \beta_1$.	(7)	1	3
		(OR)			
(b)	(i)	Discuss the basic concepts of information theory with respect to the	(7)	1	3
	(ii)	Describe how logistic regression models the probability of a binary	(7)	1	3
		outcome using the sigmoid function.			

Q. Code:192589

12. (a)	Explain the concept of forward propagation and backward propagation in multi-layer perceptron.	(14)	2	3
	(OR)			
(b)	(i) Explore steps involved in dropping out neurons from neural network.	(6)	2	3
	(ii) Differentiate L1 and L2 regularization technique which shall be	(8)	2	3
	applied towards high dimensional dataset.			
13. (a)	Examine the object edge detection technique used for image in detail.	(14)	3	3
	(OR)			
(b)	Explain the architecture of Convolutional Neural Networks (CNNs) and	(14)	3	3
	their key components, including convolutional layers, pooling layers, and			
	fully connected layers.			
14. (a)	Discuss in detail about the various gates involved in GRU architecture with	(14)	4	3
	a neat diagram.			
	(OR)			
(b)	Construct a simple recurrent neural network to work with sequential data	(14)	4	3
	and also explain the different layers and function involved in it.			
15. (a)	Analyse the architecture of Neural Networks with attention mechanisms	(14)	5	3
	with a neat diagram.			
	(OR)			
(b)	Explain Multi- head attention with a neat diagram in detail.	(14)	5	3

$\frac{PART-C (1 x 10 = 10 Marks)}{(Q.No.16 is compulsory)}$

					-	1.			Marks	CO	RBT LEVEL
16.	Investigate networks in	the sequ	effectiveness ence predictior	of 1 tas	Long ks.	Short-Term	Memory	(LSTM)	(10)	4	5
