Reg. No.

M.E. / M.TECH. DEGREE EXAMINATIONS, DEC 2019
 First Semester

MA16183 - ADVANCED NUMERICAL METHODS
(Internal Combustion Engineering)
(Regulation 2016)

Time: Three Hours

Maximum : 100 Marks
Answer ALL questions
PART A - ($\mathbf{1 0} \mathbf{X} 2=\mathbf{2 0}$ Marks $)$

1. State the condition for convergence of Newton-Raphson method.
2. Solve the system of equation by Gauss elimination method
$3 x+y=2, x+3 y=-2$.
3. Write Adams-Bash forth predictor-corrector method for solving the initial value

2 R problem.
4. Using R.K.method of second order, compute $\mathrm{y}(0.1)$ from 2 AP $y^{\prime}=\frac{1}{2}(1+x) y^{2}, y(0)=1$
5. State Neumann conditions.
6. What are the explicit and implicit schemes to solve parabolic PDE.
7. Classify the PDE $f_{x}-f_{y y}=0$
8. Write the standard five point formula for solving the Laplace equation. $4 \quad \mathbf{R}$
9. Explain orthogonal collocation method.
10. Define Conforming elements.
9. Explain orthogonal collocation method. $\mathbf{5} \mathbf{~ U ~}$

PART B - (5 X16 = 80 Marks)

11. (a) (i) Solve the system of linear equation using Gauss Seidel method
(8) $1 \quad$ AP

$$
10 x-5 y-2 z=3 ; 4 x-10 y+3 z=-3 ; x-6 y+10 z=-3
$$

(ii) Solve the following equation by Gauss Elimination method
(8) $1 \quad$ AP $2 x-6 y+8 z=24 ; 5 x+4 y-3 z=2 ; 3 x+y+2 z=16$
(OR)
(b) Use Faddeev's method to find the eigen values of the matrix (16) $\mathbf{1}$ AP $A=\left(\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 2\end{array}\right)$ and hence find its inverse.
12. (a) Solve the initial value problem $y^{\prime}=y+x, y(0)=1$ at $x=0.2,0.4$ with $\mathrm{h}=0.2$. Use Runge Kutta method of $4^{\text {th }}$ order.
(OR)
(b) (i) Using shooting technique solve the boundary value problem $y^{\prime \prime}=y, \quad y(0)=0, y(1)=1.17$. Compare the solution with exact solution.
(ii) Using Orthogonal collocation method solve the BVP: $y^{\prime \prime}+y+x=0, y(0)=0=y(1)$
13. (a) (i) Solve $u_{x x}=u_{t}$ in $0<x \leq 5, \mathrm{t}>0$ given that $\mathrm{u}(\mathrm{x}, 0)=\sin \pi \mathrm{x}$, $\mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(1, \mathrm{t})=0$ using Bender Schmidt method by taking $\mathrm{h}=0.2$.
(ii) Solve $u_{x x}=u_{t}$ given that $\mathrm{u}(\mathrm{x}, 0)=0, \mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(1, \mathrm{t})=\mathrm{t}$. Compute u for one time step with $\mathrm{h}=1 / 4$ and $\mathrm{k}=1 / 16$ by Crank Nicholson method.

(OR)

(b) Approximate the solution to the wave equation $u_{x x}=u_{t t}$, $\mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(5, \mathrm{t})=0, \mathrm{t}>0, \mathrm{u}(\mathrm{x}, 0)=x^{2}(5-x)$ and $u_{t}(x, 0)=0,0 \leq x \leq 5$ with $\Delta x=1$ and $\Delta t=0.25$ for up to $\mathrm{t}=2$.
14. (a) Solve $\nabla^{2} u=8 x^{2} y^{2}$ for the square mesh given $\boldsymbol{u}=0$ on the 4 boundaries dividing the square into 16 sub squares of length 1 unit.
(OR)
(b) Solve $u_{x x}+u_{y y}=0$ in $0 \leq x \leq 4,0 \leq y \leq 4$ given that $u(0, y)=0, u(4, y)=12+y, u(x, 0)=3 x, u(x, 4)=x^{2}$ Take $h=k=1$ and obtain the result correct to three decimal places.
15. (a) Obtain one parameter approximate solution of BVP $\nabla^{2} u=x^{2}-1$, for $|x| \leq 1,|y| \leq 1 / 2, \quad u=0$ on the boundary by collocation method.

(OR)

(b) Obtain a one parameter approximate solution of the BVP $\nabla^{2} u=-1$ $|x| \leq 1,|y| \leq 1, u=0$ on the boundary using Galerkin finite element method.

