Q. Code: 922886

Reg. No.

M.E. / M.TECH. DEGREE EXAMINATIONS, DEC 2019

First Semester

MA16183 – ADVANCED NUMERICAL METHODS

(Internal Combustion Engineering)

(Regulation 2016)

Time: Three Hours

Maximum : 100 Marks

Answer ALL questions

PART A - (10 X 2 = 20 Marks)

		CO	RBT
1.	State the condition for convergence of Newton-Raphson method.	1	R
2.	Solve the system of equation by Gauss elimination method	1	AP
	3x + y = 2, x + 3y = -2		
3.	Write Adams-Bash forth predictor-corrector method for solving the initial value problem.	2	R
4.	Using R.K.method of second order, compute $y(0.1)$ from	2	AP
	$y' = \frac{1}{2}(1+x)y^2, y(0) = 1$		
5.	State Neumann conditions.	3	R
6.	What are the explicit and implicit schemes to solve parabolic PDE.	3	U
7.	Classify the PDE $f_x - f_{yy} = 0$	4	U
8.	Write the standard five point formula for solving the Laplace equation.	4	R
9.	Explain orthogonal collocation method.	5	U
10.	Define Conforming elements.	5	R
	PART B - (5 X16 = 80 Marks)		
11.	(a) (i) Solve the system of linear equation using Gauss Seidel method (8)	1	AP
	10x - 5y - 2z = 3; 4x - 10y + 3z = -3; x - 6y + 10z = -3		
	(ii) Solve the following equation by Gauss Elimination method (8)	1	AP
	2x - 6y + 8z = 24; 5x + 4y - 3z = 2; 3x + y + 2z = 16		
	(OR)		
	(b) Use Faddeev's method to find the eigen values of the matrix (16)	1	AP
	$A = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 2 \end{pmatrix}$ and hence find its inverse.		

12. (a) Solve the initial value problem y' = y + x, y(0) = 1 at x = 0.2, 0.4 (16) 2 AP with h=0.2. Use Runge Kutta method of 4th order.

(OR)

- (b) (i) Using shooting technique solve the boundary value problem (8) 2 AP y'' = y, y(0) = 0, y(1) = 1.17. Compare the solution with exact solution.
 - (ii) Using Orthogonal collocation method solve the BVP: (8) 2 AP y'' + y + x = 0, y(0) = 0 = y(1)
- 13. (a) (i) Solve $u_{xx} = u_t$ in $0 < x \le 5$, t > 0 given that $u(x,0) = \sin \pi x$, (8) 3 AP u(0,t) = 0, u(1,t) = 0 using Bender Schmidt method by taking h=0.2.
 - (ii) Solve $u_{xx} = u_t$ given that u(x,0) = 0, u(0,t) = 0, u(1,t) = t. (8) 3 AP Compute u for one time step with $h = \frac{1}{4}$ and $k = \frac{1}{16}$ by Crank Nicholson method.

(OR)

- (b) Approximate the solution to the wave equation $u_{xx} = u_{tt}$, (16) 3 AP u(0,t) = 0, u(5,t) = 0, t > 0, $u(x,0) = x^2(5-x)$ and $u_t(x,0) = 0$, $0 \le x \le 5$ with $\Delta x = 1$ and $\Delta t = 0.25$ for up to t=2.
- 14. (a) Solve $\nabla^2 u = 8x^2y^2$ for the square mesh given u = 0 on the 4 (16) 4 AP boundaries dividing the square into 16 sub squares of length 1 unit.

(OR)

- (b) Solve $u_{xx} + u_{yy} = 0$ in $0 \le x \le 4, 0 \le y \le 4$ given that (16) 4 AP $u(0, y) = 0, u(4, y) = 12 + y, u(x, 0) = 3x, u(x, 4) = x^2$ Take h = k = 1 and obtain the result correct to three decimal places.
- 15. (a) Obtain one parameter approximate solution of BVP (16) 5 AP $\nabla^2 u = x^2 - 1$, for $|x| \le 1$, $|y| \le \frac{1}{2}$, u = 0 on the boundary by collocation method.

(OR)

(b) Obtain a one parameter approximate solution of the BVP ∇²u = -1 (16) 5 AP |x| ≤ 1, |y| ≤ 1, u = 0 on the boundary using Galerkin finite element method.