Registration No.

M.E./M.Tech. Degree Examinations, January 2017

First Semester
COMPUTER AIDED DESIGN
MA16183 - ADVANCED NUMERICAL METHODS
(Common to Internal Combustion Engineering)
(Regulation 2016)

QP Code:262522

Time: Three hours
Maximum : 100 marks
Answer ALL questions
PART A-(10 X $2=20$ Marks $)$

1. Solve the system of equation by Gauss elimination method $2 x+y=3 ; 7 x-3 y=4$.
2. Obtain an iterative formula to find the reciprocal of a number N using Newton's method.
3. Write the algorithm to solve first order ODE by second order Runge-Kutta method.
4. Calculate the stiffness ratio of $\frac{d y}{d x}=-100 y, \frac{d z}{d x}=2 y-z, y(0)=0, z(0)=1$.
5. State the finite difference form of $2 y^{\prime \prime}+y=5$.
6. State the Diritchlet boundary condition.
7. Classify the given partial differential equation $(x+1) u_{x x}-2(x+2) u_{x y}+(x+3) u_{y y}=0$
8. Write Liebmann iterative formula.
9. Give Laplace equation in polar form.
10. Define conforming element.

PART B-(5 X16 = 80 Marks $)$
11. (a) (i) Solve the system of linear equation using Gauss seidel method

$$
\begin{equation*}
8 x_{1}-3 x_{2}+2 x_{3}=20 ; 4 x_{1}+11 x_{2}-x_{3}=33 ; 6 x_{1}+3 x_{2}+12 x_{3}=35 \tag{8}
\end{equation*}
$$

(ii) Solve the following tridiagonal system $\left(\begin{array}{ccc}2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ by

Thomas Algorithm

(OR)

(b) Use Faddeev's method to find the eigen values of the matrix $_{A}=\left(\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 2\end{array}\right)$ and hence find its inverse.
12. (a) Solve the initial value problem $y^{\prime}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}, y(0)=1 \quad$ at $\quad x=0.2,0.4$. Use Runge Kutta method of $4^{\text {th }}$ order.

> (OR)
(b) (i) Using shooting technique solve the boundary value problem $y^{\prime \prime}=y$, $y(0)=0, y(1)=1.17$. Compare the solution with exact solution.
(ii) Using collocation method, approximate the solution of the equation $y^{\prime \prime}+y+x=0$ subject to the boundary conditions $y(0)=0=y(1)$
13. (a) (i) Solve $u_{t t}=4 u_{x x}$ with the boundary conditions $u(0, t)=0=u(4, t)=u_{t}(x, 0)$ and $u(x, 0)=x(4-x)$ compute u for 4 time steps with $h=1$.
(ii) Solve $\boldsymbol{u}_{t}=\boldsymbol{u}_{x x} \quad$ with $\boldsymbol{u}(\boldsymbol{x}, 0)=\sin (\pi \boldsymbol{x}) \quad$ and $\boldsymbol{u}(0, \boldsymbol{t})=\boldsymbol{u}(1, \boldsymbol{t})=0, \forall \boldsymbol{t}>0 \quad$ using Crank-Nicolson method with $\boldsymbol{h}=\frac{1}{3}, \boldsymbol{k}=\frac{1}{36}$ find the solution for one time step.

(OR)

(b) Solve the initial boundary value problem $\boldsymbol{u}_{t}=\boldsymbol{u}_{x x}+\boldsymbol{u}_{y y}, \boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y}, 0)=\cos \frac{\pi \boldsymbol{x}}{2} \cos \frac{\pi \boldsymbol{y}}{2},-1 \leq \boldsymbol{x}, \boldsymbol{y} \leq 1, \boldsymbol{t}=0 \quad$ using ADI method with $u=0, x= \pm 1, y= \pm 1, t>0, h=\frac{1}{2}, k=\frac{1}{6}$.
14. (a) Solve $u_{x x}+u_{y y}=0$ in $0 \leq x \leq 4,0 \leq y \leq 4$ given that $u(0, y)=0, u(4, y)=12+y, u(x, 0)=3 x, u(x, 4)=x^{2}$. Take $\quad h=k=1 \quad$ and
obtain the result correct to three decimal places.

(OR)

(b) (i) Solve $\nabla^{2} \boldsymbol{u}=8 \boldsymbol{x}^{2} \boldsymbol{y}^{2}$ for the square mesh given $\boldsymbol{u}=0$ on the 4 boundaries dividing the square into 16 sub squares of length 1 unit.
(ii) Derive the finite difference scheme to solve $u_{x x}+u_{y y}=f(x, y)$
15. (a) Find one parameter Galerkin solution of the boundary value problem $\nabla^{2} u=-1$ on $|x| \leq 1,|y| \leq 1, u=\frac{\partial u}{\partial n}$ on $|x|=1,|y|=1$ where n is the inward normal to the boundary.

(OR)

(b) Find a two parameter Least square approximation solution of the BVP $\nabla^{2} u=x^{2}-1$, for $|x| \leq 1,|y| \leq 1 / 2, u=0$ on the boundary.

